Category Archives: Probability and Statistics

Probability and Statistics

Curing the Compulsive Gambler: Challenging Probability Problem


Mr. Brown always bets a dollar on the number 13 at roulette against the advice of Kind Friend. To help cure Mr. Brown of playing roulette, Kind Friend always bets Brown $20 at even money that Brown will be behind at the end of 36 plays. How is the cure working?

(Most American roulette wheels have 38 equally likely numbers. If the player’s number comes up, he is paid 35 times his stake and gets his original stake back; otherwise, he loses his stake)


Solution:

If Mr. Brown wins once in 36 turns, he is even with the casino. His probability of losing all 36 times is \displaystyle \left( \frac{37}{38} \right)^{36} \approx 0.383 . In a single turn, his expectation is

35\left( \frac{1}{38} \right)-1\left( \frac{37}{38} \right) = - \frac{2}{38}\ \text{dollars}

and in 36 turns

-\frac{2}{38}\left( 36 \right) = -1.89 \ \text{dollars}

Against Kind Friend, Mr. Brown has an expectation of

+20\left( 0.617 \right)-20\left( 0.383 \right)\approx +4.68 \ \text{dollars}

And so, all told, Mr. Brown gains +4.68 – 1.89 = + 2.79 dollars per 36 trials; he is finally making money at roulette. Possibly Kind Friend will be cured first. Of course, when Brown loses all 36, he is out $56, which may jolt him a bit.


Advertisements
Advertisements

Chuck-a-Luck: Challenging Probability Problem


Chuck-a-Luck is a gambling game often played at carnivals and gambling houses. A player may bet on anyone of the numbers 1, 2, 3, 4, 5, 6. Three dice are rolled. If the player’s number appears on one, two, or three of the dice, he receives respectively one, two, or three times his original stake plus his own money back; otherwise, he loses his stake. What is the player’s expected loss per unit stake? (Actually, the player may distribute stakes on several numbers, but each such stake can be regarded as a separate bet.)


Solution:

Let us compute the losses incurred (a) when the numbers on the three dice are different, (b) when exactly two are alike, and (c) when all three are alike. An easy attack is to suppose that you place a unit stake on each of the six numbers, thus betting six units in all. Suppose the roll produces three different numbers, say 1, 2, 3. Then the house takes the three unit stakes on the losing numbers 4, 5, 6 and pays off the three winning numbers 1, 2, 3. The house won nothing, and you won nothing. That result would be the same for any roll of three different numbers.

Next suppose the roll of the dice results in two of one number and one of a second, say 1, 1, 2. Then the house can use the stakes on numbers 3 and 4 to payoff the stake on number 1, and the stake on number 5 to payoff that on number 2. This leaves the stake on number 6 for the house. The house won one unit, you lost one unit, or per unit stake you lost 1/6.

Suppose the three dice roll the same number, for example, 1, 1, 1. Then the house can pay the triple odds from the stakes placed on 2, 3, 4 leaving those on 5 and 6 as house winnings. The loss per unit stake then is 2/6. Note that when a roll produces a multiple payoff the players are losing the most on the average.

To find the expected loss per unit stake in the whole game, we need to weight the three kinds of outcomes by their probabilities. If we regard the three dice as distinguishable –say red, green, and blue — there are 6 \times 6 \times 6= 216 ways for them to fall.

In how many ways do we get three different numbers? If we take them in order, 6 possibilities for the red, then for each of these, 5 for the green since it must not match the red, and for each red-green pair, 4 ways for the blue since it must not match either of the others, we get 6 \times 5 \times 4 = 120 ways.

For a moment skip the case where exactly two dice are alike and go on to three alike. There are just 6 ways because there are 6 ways for the red to fall and only 1 way for each of the others since they must match the red.

This means that there are 216 - 126 = 90 ways for them to fall two alike and one different. Let us check that directly. There are three main patterns that give two alike: red-green alike, red-blue alike, or green-blue alike. Count the number of ways for one of these, say red-green alike, and then multiply by three. The red can be thrown 6 ways, then the green 1 way to match, and the blue 5 ways to fail to match, or 30 ways. All told then we have 3 \times 30 = 90 ways, checking the result we got by subtraction.

We get the expected loss by weighting each loss by its probability and summing as follows:

\underbrace{\frac{120}{216}\times 0}_\text{none alike} + \underbrace{\frac{90}{216}\times \frac{1}{6}}_\text{2 alike}+\underbrace{\frac{6}{216}\times \frac{2}{6}}_\text{3 alike} = \frac{17}{216} \approx 0.079

Thus, you lose about 8% per play. Considering that a play might take half a minute and that government bonds pay you less than 4% interest for a year, the attrition can be regarded as fierce.

This calculation is for regular dice. Sometimes a spinning wheel with a pointer is used with sets of three numbers painted in segments around the edge of the wheel. The sets do not correspond perfectly to the frequencies given by the dice. In such wheels I have observed that the multiple payoffs are more frequent than for the dice, and therefore the expected loss to the bettor greater.


Advertisements
Advertisements

Coin in Square: Challenging Probability Problem


In a common carnival game, a player tosses a penny from a distance of about 5 feet onto the surface of a table ruled in 1-inch squares. If the penny (3/4 inch in diameter) falls entirely inside a square, the player receives 5 cents but does not get his penny back; otherwise, he loses his penny. If the penny lands on the table, what is his chance to win?


Solution:

When we toss the coin onto the table, some positions for the center of the coin are more likely than others, but over a very small square we can regard the probability distribution as uniform. This means that the proba­bility that the center falls into any
region of a square is proportional to the area of the region, indeed, is the area of the region divided by the area of the square. Since the coin is 3/8 inch in radius, its center must not land within 3/8 inch of any edge if the player is to win. This restriction generates a square of side 1/4 inch within which the center of the coin must lie for the coin to be in the square. Since the proba­bilities are proportional to areas, the probability of winning is \displaystyle \left( \frac{1}{4} \right)^2 = \frac{1}{16}. Of course, since there is a chance that the coin falls off the table altogether, the total probability of winning is smaller still. Also, the squares can be made smaller by merely thickening the lines. If the lines are 1/16 inch wide, the winning central area reduces the probability to \displaystyle \left( \frac{3}{16} \right)^{2} = \frac{9}{256} or less than \displaystyle \frac{1}{28}.


Advertisements
Advertisements

Trials until First Success: Challenging Probability Problem


On the average, how many times must a die be thrown until one gets a 6?


Solution:

Let p be the probability of a 6 on a given trial. Then the probabilities of success for the first time on each trial are (let q = 1 - p):

TrialProbability of success on trial
1 p
2 pq
3 pq ^2
..
..
..

The sum of the probabilities is

\begin{align*}
p+pq+pq^2+\ldots & = p\left( 1+q+q^2+\ldots \right) \\ \\
 & = \frac{p}{1-q} \\ \\
 & = \frac{p}{p} \\ \\
 & = 1
\end{align*}

The mean number of trials, m, is by definition,

m = p + 2pq + 3pq^2 + 4pq^3+ \ldots

Note that our usual trick for summing a geometric series works:

qm = pq + 2pq^2+3pq^3 + \ldots

Subtracting the second expression from the first gives

m-qm=p+pq+pq^2+\ldots

or

m\left( 1-q \right) = 1

Consequently,

mp=1

and

m=1/p

We see that p=1/6, and so m=6.

On the average, a die must be thrown 6 times until one gets a 6.


Advertisements
Advertisements

The Flippant Juror: Challenging Probability Problem


A three-man jury has two members each of whom independently has proba­bility p of making the correct decision and a third member who flips a coin for each decision (majority rules). A one-man jury has probability p of making the correct decision. Which jury has the better probability of making the correct decision?


Solution:

The two juries have the same chance of a correct decision. In the three-man jury, the two serious jurors agree on the correct decision in the fraction p \times p = p^2 of the cases, and for these cases the vote of the joker with the coin does not matter. In the other correct decisions by the three-man jury, the serious jurors vote oppositely, and the joker votes with the “correct” juror. The chance that the serious jurors split is p\left( 1-p \right)+\left( 1-p \right)p or 2p\left( 1-p \right). Halve this because the coin favors the correct side half the time. Finally, the total probability of a correct decision by the three-man jury is p^{2}+p\left( 1-p \right) =p^{2}+p-p^{2}=p, which is identical with the prob­ability given for the one-man jury.

The two options have equal probability of making the correct decision.


Advertisements
Advertisements

Purchase Fifty Challenging Problems in Probability


You can complete your purchase even if you do not have a Paypal account. Just click on the appropriate card type you have below the “Pay with PayPal” button.

For concerns, please send an email to [email protected]

Purchase Fifty Challenging Problems in probability with solutions for $29

Fifty Challenging Problems in Probability with Solutions

This is a PDF copy of the book, Fifty Challenging Problems in Probability with Solutions. Expect the copy to be sent to your email address within 24 hours. If you have not heard from us within 24 hours, kindly send us a message to [email protected].

$29.00


Looking for another material? Kindly send us an email and we will get back to you within 24 hours.


Advertisements
Advertisements

Probability & Statistics for Engineers & Scientists Ninth Edition by Walpole Exercise 1.2


According to the journal Chemical Engineering, an important property of a fiber is its water absorbency. A random sample of 20 pieces of cotton fiber was taken and the absorbency on each piece was measured. The following are the absorbency values:

18.7121.4120.7221.8119.2922.4320.17
23.7119.4420.5018.9220.3323.0022.85
19.2521.7722.1119.7718.0421.12

(a) Calculate the sample mean and median for the above sample values.
(b) Compute the 10% trimmed mean.
(c) Do a dot plot of the absorbency data.
(d) Using only the values of the mean, median, and trimmed mean, do you have evidence of outliers in the data?


Solution:

Part A. The sample mean is computed as follows:

\begin{align*}
\bar x & = \frac{\Sigma x_{i}}{n} \\
\bar x & = \frac{18.71+21.41+20.72+\cdots +21.12}{20} \\
\bar x & = 20.77 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

We can solve for the sample median by arranging the data in increasing order first.

18.04, \
18.71, \
18.92, \
19.25, \
19.29, \
19.44, \
19.77, \
20.17, \
20.33, \
20.50 \\
20.72, \
21.12, \
21.41, \
21.77, \
21.81, \
22.11, \
22.43, \
22.85, \
23.00, \
23.71

Since there are 20 measurements (even), the middle measurements are the (20/2) 10th and the (20/2 + 1) 11th measurement. The 10th measurement is 20.50 and the 11th measurement is 20.72. The median is the average of these two measurements.

\begin{align*}
\tilde x & = \frac{20.50+20.72}{2} \\
\tilde x & = 20.61 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B. The 10% trimmed mean is calculated by removing 10% of the lowest data and 10% of the highest data. That is, removing the 2 lowest and 2 highest data. We are left with the following:

18.92, \
19.25, \
19.29, \
19.44, \
19.77, \
20.17, \
20.33, \
20.50 \\
20.72, \
21.12, \
21.41, \
21.77, \
21.81, \
22.11, \
22.43, \
22.85

The 10% trimmed mean, \bar x _{tr10} is

\begin{align*}
\bar x _{tr10} & = \frac{\Sigma x_{i}}{n} \\
\bar x _{tr10} & = \frac{18.92+19.25+\cdots+22.85}{16} \\
\bar x _{tr10} & = 20.74 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part C. The dot plot is shown

dot plot for Probability & Statistics for Engineers & Scientists Ninth Edition by Walpole Exercise 1.2

Part D. Since the values of the mean, median, and trimmed mean are not actually far from each other, we can conclude that there are no outliers in the given measurements.


Advertisements
Advertisements

Probability & Statistics for Engineers & Scientists Ninth Edition by Walpole Exercise 1.1


The following measurements were recorded for the drying time, in hours, of a certain brand of latex paint.

3.42.54.82.93.6
2.83.35.63.72.8
4.44.05.23.04.8

Assume that the measurements are a simple random sample.
(a) What is the sample size for the above sample?
(b) Calculate the sample mean for these data.
(c) Calculate the sample median.
(d) Plot the data by way of a dot plot.
(e) Compute the 20% trimmed mean for the above data set.
(f) Is the sample mean for these data more or less descriptive as a center of location than the trimmed mean?


Solution:

Part A. Sample size, n is the total number of measurements.

n=15 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B. The sample mean, \bar x is computed as follows:

\begin{align*}
\bar x & = \sum_{i=1}^{n}\frac{x_{i}}{n} \\
& = \frac{3.4+2.5+4.8+2.9+3.6+2.8+3.3+5.6+3.7+2.8+4.4+4.0+5.2+3.0+4.8}{15} \\
& = \frac{56.8}{15} \\
& = 3.79 \ \text{hours} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part C. The sample median, \tilde x is the number at the middle of the arranged measurements in increasing magnitude. There are 15 measurements, n=15. If we arranged the data in increasing magnitude, the median is the measurement in the middle.

2.5, \ 2.8, \ 2.8, \ 2.9, \ 3.0, \ 3.3, \ 3.4, \ \underset{\color{Blue} \text{middle number}}{3.6}, \ 3.7, \ 4.0, \ 4.4, \ 4.8, \ 4.8, \ 5.2, \ 5.6

The middle number is 3.6. That is

\tilde x= 3.6 \ \text{hours} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part D. This dot plot has been created using the Statistical Software Rguroo

a dot plot for the data: 3.4, 2.5, 4.8, 2.9, 3.6, 2.8, 3.3, 5.6, 3.7, 2.8, 4.4, 4.0, 5.2, 3.0, 4.8. this dot plot was made possible through Rgurro at https://www.rguroo.com/

Part E. The 20% trimmed mean means the average of the measurements left after removing 20% highest and 20% lowest data. This means we remove the 3 highest and 3 lowest numbers. Therefore, the data becomes

\ 2.9, \ 3.0, \ 3.3, \ 3.4, \ 3.6,  \ 3.7, \ 4.0, \ 4.4, \ 4.8,

The 20% trimmed mean, \bar x _{tr20} is

\begin{align*}
\bar x _{tr20} & = \frac{2.9+3.0+ \cdots+4.8}{9} \\
\bar x _{tr20} & = \frac{33.1}{9} \\
\bar x _{tr20} & = 3.678 \ \text{hours} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part F. The sample mean for these data is \bar x = 3.79 \ \text{hours} while the 20% trimmed mean is \bar x _{tr20} = 3.678 \ \text{hours}. Seems like the two means are not really far from each other, but because of the elimination of the extreme values, we can treat the trimmed mean as a better descriptive mean.


Advertisements
Advertisements

Chapter 1: Introduction to Statistics and Data Analysis


Problem 1.2

Problem 1.3

Problem 1.4

Problem 1.5

Problem 1.6

Problem 1.7

Problem 1.8

Problem 1.9

Problem 1.10

Problem 1.11

Problem 1.12

Problem 1.13

Problem 1.14

Problem 1.15

Problem 1.16

Problem 1.17

Problem 1.18

Problem 1.19

Problem 1.20

Problem 1.21

Problem 1.22

Problem 1.23

Problem 1.24

Problem 1.25

Problem 1.26

Problem 1.27

Problem 1.28

Problem 1.29

Problem 1.30

Problem 1.31

Problem 1.32

Problem 1.33


Advertisements
Advertisements

Probability & Statistics for Scientists & Engineers Ninth Edition by Walpole, Myers, Myers, and Ye

Chapter 2: Probability

Chapter 3: Random Variables and Probability Distributions

Chapter 4: Mathematical Expectation

Chapter 5: Some Discrete Probability Distribution

Chapter 6: Some Continuous Probability Distribution

Chapter 7: Functions of Random Variables

Chapter 8: Fundamental Sampling Distributions and Data Descriptions

Chapter 9: One- and Two-Sample Estimation Problems

Chapter 10: One- and Two-Sample Tests of Hypotheses

Chapter 11: Simple Linear Regression and Correlation

Chapter 12: Multiple Linear Regression and Certain Nonlinear Regression Models

Chapter 13: One-Factor Experiments: General

Chapter 14: Factorial Experiments (Two or More Factors)

Chapter 15: 2k Factorial Experiments and Fractions

Chapter 16: Nonparametric Statistics

Chapter 17: Statistical Quality Control

Chapter 18: Bayesian Statistics