Category Archives: Engineering Mathematics Blog

Hibbeler Statics 14E P2.2 — Resultant of a System of Two Forces


Determine the magnitude of the resultant force \textbf{F}_{\text{R}} = \textbf{F}_1 + \textbf{F}_2 and its direction, measured counterclockwise from the positive x axis. 

Engineering Mechanics: Statics figure for Problem 2-3

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 2-1
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-3


SOLUTION:

The parallelogram law of the force system is shown.

Consider the triangle AOB.

Using cosine law to solve for the resultant force \textbf{F}_{\text{R}}

\begin{align*}
\textbf{F}_\text{R} & =\sqrt{\left(250\right)^2+\left(375\right)^2-2\left(250\right)\left(375\right) \cos\:75^{\circ} }\\
& =393.2 \ \text{lb}\\
& =393\:\text{lb}\\
\end{align*}

The value of angle θ can be solved using sine law. 

\begin{align*}
\frac{393.2}{\sin\:\left(75^{\circ} \right)} & = \frac{250}{\sin\:\theta } \\
\sin \theta & = \frac{250 \ \sin75 \degree}{393.2}\\
\theta & =\sin^{-1} \left(\frac{250 \ \sin75 \degree}{393.2}\right)\\
\theta & = 37.89^{\circ}\\
\end{align*}

Solve for the unknown angle \phi .

\phi =360^{\circ} -45^{\circ} +37.89^{\circ} =353^{\circ} 

The resultant force has a magnitude of 393 lb and is located 353º measured counterclockwise from the positive x-axis.


Advertisements
Advertisements

Computing the mass and weight of a man on earth and on the moon


If a man weighs 155 lb on earth, specify (a) his mass in slugs, (b) his mass in kilograms, and (c) his weight in newtons. If the man is on the moon, where the acceleration due to gravity is gm=5.30 ft/s², determine (d) his weight in pounds, and (e) his mass in kilograms.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-21
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-20


Solution:

Part A

From the formula, \text{W}=\text{mg}, we can solve for the mass by dividing the weight by the acceleration due to gravity. That is

\begin{align*}
\text{m} & = \frac{\text{W}}{\textbf{g}}\\
& = \frac{155\ \text{lb}}{32.2 \ \text{ft/s}^2}\\
& = 4.81 \ \text{slug}\\
\end{align*}

Part B

Convert the slug to kilograms, knowing that 1 slug = 14.59 kg.

\begin{align*}
\begin{align*}
\text{m} & = \left( \frac{155}{32.2} \text{slug}\right)\left( \frac{14.59 \ \text{kg}}{1 \ \text{kg}} \right)\\
& = 70.2 \ \text{kg}\\
\end{align*}
\end{align*}

Part C

Convert the 155 lb to newtons using 1 lb = 4.448 N.

\begin{align*}
\textbf{W} & = 155 \ \text{lb}\times \frac{4.448 \ \text{N}}{1 \ \text{lb}}\\
& = 689 \ \text{N}\\
\end{align*}

Part D

Using the same formulas, but now \textbf{g}=5.30 \ \text{ft/s}^2.

\textbf{W}=155\left(\frac{5.30}{32.2}\right)=25.5\:\text{lb}

Part E

\textbf{m}=155\left(\frac{14.59\:\text{kg}}{32.2}\right)=70.2\:\text{kg}

Advertisements
Advertisements

The force of gravity acting between two particles


Two particles have a mass of 8 kg and 12 kg, respectively. If they are 800 mm apart, determine the force of gravity acting between them. Compare this result with the weight of each particle.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-20
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-21


Solution:

The force of gravity acting between them:

\begin{align*}
\textbf{F} & =\textbf{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =66.73\left(10^{-12}\right) \text{m}^3/ \left( \text{kg} \cdot \text{s}^2 \right)   \left[\frac{8 \  \text{kg} \left(12\ \text{kg}\right)}{\left(0.8\ \text{m} \right)^2}\right]\\
&=10\left(10^{-9}\right)\ \text{N}\\
& =10.0 \ \text{nN}\\
\end{align*}

The weight of the 8 kg particle

\textbf{W}_1=8\left(9.81\right)=78.5\:\text{N}

Weight of the 12 kg particle

\textbf{W}_2=12\left(9.81\right)=118\:\text{N}

Advertisements
Advertisements

Expressing the Density of Water in SI Units


Water has a density of 1.94 slug/ft³. What is the density expressed in SI units? Express the answer to three significant figures.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-19
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-17


Solution:

\begin{align*}
\rho _w & =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =999.6\:\frac{\text{kg}}{\text{m}^3}\\
& =1.00\:\text{Mg/m}^3\\
\end{align*}

Advertisements
Advertisements

Showing How an Equation is Dimensionally Homogeneous


Using the SI system of units, show that Eq. 1–2 is a dimensionally homogeneous equation which gives F in newtons. Determine to three significant figures the gravitational force acting between two spheres that are touching each other. The mass of each sphere is 200 kg and the radius is 300 mm.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-18
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-15


Solution:

To prove that F is in Newtons, we have

\begin{align*}
\text{F} & =\text{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =\left(\frac{\text{m}^3}{\text{kg}\cdot \text{s}^2}\right)\left(\frac{\text{kg}\cdot \text{kg}}{\text{m}^2}\right)\\
& =\frac{\text{kg}\cdot \text{m}}{\text{s}^2}\\
& =\text{N}
\end{align*}

Now, if we substitute the given values into the equation

\begin{align*}
\text{F} & = 66.73\left(10^{-12}\right)\left[\frac{200\left(200\right)}{0.6^2}\right]\\
& = 7.41\left(10^{-6}\right) \text{N}\\
& =7.41\ \mu  \text{N}\\
\end{align*}

Advertisements
Advertisements

Problem 1-17| General Principles| Engineering Mechanics: Statics| RC Hibbeler

If an object has a mass of 40 slugs, determine its mass in kilograms.

Continue reading

Problem 1-16| General Principles| Engineering Mechanics: Statics| RC Hibbeler

What is the weight in newtons of an object that has a mass of: (a) 10 kg, (b) 0.5 g, and (c) 4.50 Mg? Express the result to three significant figures. Use an appropriate prefix.

Continue reading

Problem 1-15| General Principles| Engineering Mechanics: Statics| RC Hibbeler

Determine the mass of an object that has a weight of (a) 20 mN, (b) 150 kN, and (c) 60 MN. Express the answer to three significant figures.

Continue reading

Problem 1-14| General Principles| Engineering Mechanics: Statics| RC Hibbeler

Evaluate each of the following and express with an appropriate prefix: (a) (430 kg) ², (b) (0.002 mg)², and (c) (230 m)³.

Continue reading

Problem 1-13| General Principles| Engineering Mechanics: Statics| RC Hibbeler

Convert each of the following to three significant figures: (a) 20 lb·ft to N·m, (b) 450 lb/ft³ to kN/m³, and (c) 15 ft/h to mm/s.
Continue reading