Category Archives: Engineering Mathematics Blog

Trials until First Success: Challenging Probability Problem


On the average, how many times must a die be thrown until one gets a 6?


Solution:

Let p be the probability of a 6 on a given trial. Then the probabilities of success for the first time on each trial are (let q = 1 - p):

TrialProbability of success on trial
1 p
2 pq
3 pq ^2
..
..
..

The sum of the probabilities is

\begin{align*}
p+pq+pq^2+\ldots & = p\left( 1+q+q^2+\ldots \right) \\ \\
 & = \frac{p}{1-q} \\ \\
 & = \frac{p}{p} \\ \\
 & = 1
\end{align*}

The mean number of trials, m, is by definition,

m = p + 2pq + 3pq^2 + 4pq^3+ \ldots

Note that our usual trick for summing a geometric series works:

qm = pq + 2pq^2+3pq^3 + \ldots

Subtracting the second expression from the first gives

m-qm=p+pq+pq^2+\ldots

or

m\left( 1-q \right) = 1

Consequently,

mp=1

and

m=1/p

We see that p=1/6, and so m=6.

On the average, a die must be thrown 6 times until one gets a 6.


Advertisements
Advertisements

The Flippant Juror: Challenging Probability Problem


A three-man jury has two members each of whom independently has proba­bility p of making the correct decision and a third member who flips a coin for each decision (majority rules). A one-man jury has probability p of making the correct decision. Which jury has the better probability of making the correct decision?


Solution:

The two juries have the same chance of a correct decision. In the three-man jury, the two serious jurors agree on the correct decision in the fraction p \times p = p^2 of the cases, and for these cases the vote of the joker with the coin does not matter. In the other correct decisions by the three-man jury, the serious jurors vote oppositely, and the joker votes with the “correct” juror. The chance that the serious jurors split is p\left( 1-p \right)+\left( 1-p \right)p or 2p\left( 1-p \right). Halve this because the coin favors the correct side half the time. Finally, the total probability of a correct decision by the three-man jury is p^{2}+p\left( 1-p \right) =p^{2}+p-p^{2}=p, which is identical with the prob­ability given for the one-man jury.

The two options have equal probability of making the correct decision.


Advertisements
Advertisements

Problem 6-15: The centripetal acceleration at the tip of a helicopter blade


Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid rates and experience large centripetal accelerations, especially at the tip.

(a) Calculate the magnitude of the centripetal acceleration at the tip of a 4.00 m long helicopter blade that rotates at 300 rev/min.

(b) Compare the linear speed of the tip with the speed of sound (taken to be 340 m/s).


Solution:

Part A

We are given the following values: r=4.00\ \text{m}, and \omega = 300 \ \text{rev/min}.

Let us convert the angular velocity to unit of radians per second.

\omega = 300 \  \frac{\text{rev}}{\text{min}} \times \frac{2\pi \ \text{rad}}{1 \ \text{rev}}\times \frac{1\ \text{min}}{60 \ \text{sec}} = 31.4159 \ \text{rad/sec}

The centripetal acceleration at the tip of the helicopter blade can be computed using the formula

a_{c} = r \omega ^2

If we substitute the given values into the formula, we have

\begin{align*}
a_{c} & = r \omega^2 \\ \\
a_{c} & = \left( 4.00\ \text{m} \right)\left( 31.4159 \ \text{rad/sec} \right)^2 \\ \\
a_{c} & = 3947.8351 \ \text{m/s}^2 \\ \\
a_{c} & = 3.95 \times10^3 \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B

We are asked to solve for the linear velocity of the blade’s tip. We are going to use the formula

v=r \omega

We just needed to substitute the given values into the formula.

\begin{align*}
v & = r \omega \\ \\
v & = \left( 4.00 \ \text{m} \right)\left( 31.4159 \ \text{rad/sec} \right) \\ \\
v & = 125.6636 \ \text{m/s} \\ \\
v & = 126 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Let us compare this with the speed of light which is 340 m/s.

\frac{125.6636 \ \text{m/s}}{340\ \text{m/s}} \times 100 \%= 36.9599 \% =37.0\%

The linear velocity of the blades tip is 37.0% of the speed of light.


Advertisements
Advertisements

Problem 6-14: The centripetal acceleration and a linear speed of a point on an edge of an ordinary workshop grindstone


An ordinary workshop grindstone has a radius of 7.50 cm and rotates at 6500 rev/min.

(a) Calculate the magnitude of the centripetal acceleration at its edge in meters per second squared and convert it to multiples of g.

(b) What is the linear speed of a point on its edge?


Solution:

We are given the following values: r=7.50\ \text{cm}, and \omega = 6500\ \text{rev/min} . We need to convert these values into appropriate units so that we can come up with sensical units when we solve for the centripetal acceleration.

r = 7.50 \ \text{cm} = 0.075 \ \text{m}
\omega = 6500 \ \text{rev/min} \times\frac{2\pi \ \text{rad}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60\ \text{sec}} = 680.6784 \ \text{rad/sec}

Part A

We are asked to solve for the centripetal acceleration a_{c}. Basing on the given data, we are going to use the formula

a_{c} = r \omega ^{2}

Substituting the given values, we have

\begin{align*}
a_{c} & = r \omega ^2 \\ \\
a_{c} & = \left( 0.075 \ \text{m} \right) \left( 680.6784 \ \text{rad/sec} \right)^2 \\ \\
a_{c} & = 34749.2313 \ \text{m/s}^2 \\ \\
a_{c} & = 3.47 \times 10^{4} \ \text{m/s} ^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Now, we can convert the centripetal acceleration in multiples of g.

\begin{align*}
a_{c} & = 34749.2313 \ \text{m/s}^2 \times  \frac{g}{9.81 \ \text{m/s}^2}\\ \\
a_{c} & =3542.2254g \\ \\
a_{c} & = 3.54\times 10^3 g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B

We are then asked for the linear speed, v of the point on the edge. So, we can use the given values to find the linear speed. We are going to use the formula

v=r\omega

If we substitute the given values, we have

\begin{align*}
v & = r \omega \\ \\
v & = \left( 0.075 \ \text{m} \right)\left( 680.6784\ \text{rad/sec} \right) \ \ \\ \\
v & = 51.0509 \ \text{m/s} \\ \\
v & = 51.1 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Purchase Fifty Challenging Problems in Probability


You can complete your purchase even if you do not have a Paypal account. Just click on the appropriate card type you have below the “Pay with PayPal” button.

For concerns, please send an email to [email protected]

Purchase Fifty Challenging Problems in probability with solutions for $29

Fifty Challenging Problems in Probability with Solutions

This is a PDF copy of the book, Fifty Challenging Problems in Probability with Solutions. Expect the copy to be sent to your email address within 24 hours. If you have not heard from us within 24 hours, kindly send us a message to [email protected].

$29.00


Looking for another material? Kindly send us an email and we will get back to you within 24 hours.


Advertisements
Advertisements

Problem 6-13: The motion of the WWII fighter plane propeller


The propeller of a World War II fighter plane is 2.30 m in diameter.

(a) What is its angular velocity in radians per second if it spins at 1200 rev/min?

(b) What is the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac?

(c) What is the centripetal acceleration of the propeller tip under these conditions? Calculate it in meters per second squared and convert to multiples of g.


Solution:

Part A

We are converting the angular velocity \omega = 1200\ \text{rev/min} into radians per second.

\begin{align*}
\omega = & \frac{1200\ \text{rev}}{\text{min}}\times \frac{2\pi \ \text{radian}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60 \ \text{sec}} \\ \\
\omega = & 125.6637 \ \text{radians/sec} \\ \\
\omega = & 126 \ \text{radians/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B

We are now solving the linear speed of the tip of the propeller by relating the angular velocity to linear velocity using the formula v = r \omega . The radius is half the diameter, so r= \frac{2.30\ \text{m}}{2} = 1.15 \ \text{m} .

\begin{align*}
v & = r \omega \\ \\
v & = \left( 1.15 \ \text{m} \right)\left( 125.6637 \ \text{radians/sec} \right) \\ \\
v & = 144.5132 \ \text{m/s} \\ \\
v & = 145 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part C

From the computed linear speed and the given radius of the propeller, we can now compute for the centripetal acceleration a_{c} using the formula

a_{c} = \frac{v^2}{r}

If we substitute the given values, we have

\begin{align*}
a_{c} & = \frac{v^2}{r} \\ \\
a_{c} & = \frac{\left( 144.5132 \ \text{m/s} \right)^2}{1.15 \ \text{m}} \\ \\
a_{c} & = 18160.0565 \ \text{m/s}^2 \\ \\
a_{c} & = 1.82\times 10^{4} \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

We can convert this value in multiples of g

\begin{align*}
a_{c} & = 18160.0565 \ \text{m/s}^2 \times \frac{g}{9.81 \ \text{m/s}^2} \\ \\
a_{c} & = 1851.1780 g \\ \\
a_{c} & = 1.85\times 10^{3} \ g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Problem 6-12: The approximate total distance traveled by planet Earth since its birth


Taking the age of Earth to be about 4×109 years and assuming its orbital radius of 1.5 ×1011 m has not changed and is circular, calculate the approximate total distance Earth has traveled since its birth (in a frame of reference stationary with respect to the Sun).


Solution:

First, we need to compute for the linear velocity of the Earth using the formula below knowing that the Earth has 1 full revolution in 1 year

v=r\omega

where r=1.5\times 10^{11} \ \text{m} and \omega = 2\pi \ \text{rad/year} . Substituting these values, we have

\begin{align*}
v & = r \omega \\ \\
v & = \left( 1.5\times 10^{11} \ \text{m} \right)\left( 2 \pi \ \text{rad/year} \right) \\ \\
v & = 9.4248\times 10^{11} \ \text{m/year}
\end{align*}

Knowing the linear velocity, we can compute for the total distance using the formula

\Delta x = v \Delta t

We can now substitute the given values: v = 9.4248\times 10^{11} \ \text{m/year} and \Delta t = 4\times 10^{9} \ \text{years} .

\begin{align*}
\Delta x & = v \Delta t \\ \\
\Delta x & = \left( 9.4248\times 10^{11} \ \text{m/year}  \right) \left( 4\times 10^{9} \ \text{years} \right) \\ \\
\Delta x & = 3.7699 \times 10^{21} \ \text{m} \\ \\
\Delta x & = 4 \times 10^{21} \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Problem 6-11: Calculating the centripetal acceleration of a runner in a circular track


A runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of 30 m. If the runner completes the 200 m dash in 23.2 s and runs at constant speed throughout the race, what is the magnitude of their centripetal acceleration as they run the curved portion of the track?


Solution:

Centripetal acceleration a_{c} is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. It is perpendicular to the linear velocity v and has the magnitude

a_{c}=\frac{v^{2}}{r}

We can solve for the constant speed of the runner using the formula

v=\frac{\Delta x}{\Delta t}

We are given the distance \Delta x = 200 \ \text{m} , and the total time \Delta t = 23.2\ \text{s} . Therefore, the velocity is

\begin{align*}
v & =\frac{\Delta x}{\Delta t} \\ \\ 
v & = \frac{200\ \text{m}}{23.2\ \text{s}} \\ \\
v & = 8.6207\ \text{m/s}
\end{align*}

From the given problem, we are given the following values: r=30\ \text{m} . We now have the details to solve for the centripetal acceleration.

\begin{align*}
a_{c} & = \frac{v^{2}}{r} \\ \\
a_{c} & = \frac{\left( 8.6207\ \text{m/s} \right)^2}{30\ \text{m}} \\ \\
a_{c} & = 2.4772\ \text{m/s}^{2} \\ \\
a_{c} & = 2.5\  \text{m/s}^{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Problem 6-10: The angular velocity of a person in a circular fairground ride


A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow has an 8.00 m radius, at how many revolutions per minute will the riders be subjected to a centripetal acceleration whose magnitude is 1.50 times that due to gravity?


Solution:

Centripetal acceleration a_{c} is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. The relationship between the centripetal acceleration a_{c} and the angular velocity \omega is given by the formula

a_{c}=r\omega^{2}

Now, taking the formula and solving for the angular velocity:

\omega = \sqrt{\frac{a_{c}}{r}}

From the given problem, we are given the following values: r=8.00\ \text{m} and a_{c}=1.50\times 9.81 \ \text{m/s}^2=14.715\ \text{m/s}^2. If we substitute these values in the formula, we can solve for the angular velocity.

\begin{align*}
\omega & = \sqrt{\frac{a_{c}}{r}} \\ \\
\omega & = \sqrt{\frac{14.715\ \text{m/s}^2}{8.00\ \text{m}}} \\ \\
\omega & = 1.3561\ \text{rad/sec} \\ \\
\end{align*}

Then, we can convert this value into its corresponding value at the unit of revolutions per minute.

\begin{align*}
\omega & = 1.3561\ \frac{\text{rad}}{\text{sec}} \times \frac{60\ \text{sec}}{1\ \text{min}}\times \frac{1\ \text{rev}}{2\pi \ \text{rad}} \\ \\
\omega & = 12.9498\ \text{rev/min} \\ \\
\omega & = 13.0 \ \text{rev/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Problem 6-9: A construct your own problem on College Physics involving angular motion


Construct Your Own Problem

Consider an amusement park ride in which participants are rotated about a vertical axis in a cylinder with vertical walls. Once the angular velocity reaches its full value, the floor drops away and friction between the walls and the riders prevents them from sliding down. Construct a problem in which you calculate the necessary angular velocity that assures the riders will not slide down the wall. Include a free body diagram of a single rider. Among the variables to consider are the radius of the cylinder and the coefficients of friction between the riders’ clothing and the wall.