Category Archives: Engineering Mathematics Blog

Mechanics of Materials: An Integrated Learning Approach 3rd Edition by Timothy A. Philpot Problem P1.2


A 2024-T4 aluminum tube with an outside diameter of 2.50 in. will be used to support a 27-kip load. If the axial normal stress in the member must be limited to 18 ksi, determine the wall thickness required for the tube.


Solution:

We are given the following values:

\begin{align*}
\text{Outside Diameter}, D & = 2.50\ \text{in} \\
\text{Axial Load}, P & = 27\ \text{kips} \\
\text{Maximum Axial Stress}, \sigma & = 18\ \text{ksi}\\
\text{Inside Diameter}, d & = D-2t
\end{align*}

We are solving for the unknown wall thickness of the tube, t.

From the definition of normal stress, solve for the minimum area required to support a 27-kip load without exceeding a stress of 18 ksi

\begin{align*}
\sigma & =\frac{P}{A} \\ 
A_{\text{min}} & =\frac{P}{\sigma } \\ 
A_{\text{min}} & = \frac{27\:\text{kips}}{18\:\text{ksi}} \\ 
A_{\text{min}} & = 1.500\:\text{in}^2 
\end{align*}

The cross-sectional area of the aluminum tube is given by

A=\frac{\pi }{4}\left(D^2-d^2\right)

Set this expression equal to the minimum area and solve for the maximum inside diameter, d

\begin{align*}
A & =\frac{\pi }{4}\left(D^2-d^2\right) \\
A & = \frac{\pi }{4}\left[\left(2.50\ \text{in}\right)^2-d^2\right] \\
1.500\ \text{in}^2 & = \frac{\pi }{4}\left[\left(2.50\ \text{in}\right)^2-d^2\right] \\
4 \left( 1.500\ \text{in}^2 \right) & = \pi \left[\left(2.50\ \text{in}\right)^2-d^2\right] \\
\frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi} & = \left(2.50\ \text{in}\right)^2-d^2 \\
d^{2} & = \left( 2.50\ \text{in}^{2} \right) - \frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi} \\
d & = \sqrt{\left( 2.50\ \text{in}^{2} \right) - \frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi}} \\
d & = 2.08330\ \text{in}
\end{align*}

The outside diameter D, the inside diameter d, and the wall thickness t are related by

D = d+2t

Therefore, the minimum wall thickness required for the aluminum tube is

\begin{align*}
t & =\frac{D-d}{2} \\
t & = \frac{2.50\:\text{in}-2.08330\:\text{in}}{2} \\
t & = 0.208\ \text{in} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Mechanics of Materials: An Integrated Learning Approach 3rd Edition by Timothy Philpot Problem P1.1


A stainless steel tube with an outside diameter of 60 mm and a wall thickness of 5 mm is used as a compression member. If the axial normal stress in the member must be limited to 200 MPa, determine the maximum load P that the member can support.


Solution:

We are given the following values:

\begin{align*}
\text{Outside Diameter}, D &= 60\ \text{mm} \\
\text{Wall Thickness}, t & = 5\ \text{mm} \\
\text{Inside Diameter}, d & = D-2t = 60\ \text{mm}-2\left( 5\ \text{mm} \right) = 50\ \text{mm}\\
\text{Maximum Axial Stress}, \sigma & =200\ \text{MPa} = 200\ \frac{\text{N}}{\text{mm}^2}
\end{align*}

The cross-sectional area of the stainless-steel tube is

\begin{align*}
A & = \frac{\pi}{4}\left( D^2 - d^2 \right) \\
A & = \frac{\pi}{4}\left[ \left( 60\ \text{mm} \right)^2 - \left( 50\ \text{mm} \right)^2 \right] \\
A & = 863.938\ \text{mm}^2
\end{align*}

The normal stress in the tube can be expressed as

\sigma =\frac{P}{A}

The maximum normal stress in the tube must be limited to 200 MPa. Using 200 MPa as the allowable normal stress, rearrange this expression to solve for the maximum load P.

\begin{align*}
P_{max} & = \sigma _{max} A \\
P_{max} & = \left( 200\ \text{MPa} \right)\left( 863.938\ \text{mm}^2 \right)\\
P_{max} & = \left( 200\ \frac{\text{N}}{\text{mm}^2} \right)\left( 863.938\ \text{mm}^2 \right)\\
P_{max} & = 172788\ \text{N} \\
P_{max} & = 172.8\ \text{kN}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 3

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right).


Advertisements

SOLUTION:

\begin{align*}

\lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x\right)+\lim\limits_{x\to \frac{\pi }{4}}\left(\sin\:x\right)\\

& =\tan\:\frac{\pi }{4}+\sin\:\frac{\pi }{4}\\

& =1+\frac{\sqrt{2}}{2}\\

& =\frac{2+\sqrt{2}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 2

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to 3}\left(\frac{4x+2}{x+4}\right).


Advertisements

SOLUTION:

\begin{align*}

\lim_{x\to 3}\left(\frac{4x+2}{x+4}\right)& =\frac{\lim\limits_{x\to 3}\left(4x+2\right)}{\lim\limits_{x\to 3}\left(x+4\right)}\\

& =\frac{\lim\limits_{x\to 3}\left(4x\right)+\lim\limits_{x\to 3}\left(2\right)}{\lim\limits_{x\to 3}\left(x\right)+\lim\limits_{x\to 3}\left(4\right)}\\

& =\frac{4\cdot \lim\limits_{x\to 3}\left(x\right)+2}{3+4}\\

& =\frac{4\cdot 3+2}{3+4}\\

& =\frac{12+2}{7}\\

& =\frac{14}{7}\\

& =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 1

Advertisements

PROBLEM:

Evaluate \displaystyle \lim _{x\to 2}\left(x^2-4x+3\right).


Advertisements

SOLUTION:

\begin{align*}

\lim_{x\to 2}\left(x^2-4x+3\right)& = \lim_{x\to 2}\left(x^2\right)-\lim_{x\to 2}\left(4x\right)+\lim_{x\to 2}\left(3\right)\\

& =\left[\lim_{x\to 2}\left(x\right)\right]^2-4\lim_{x\to 2}\left(x\right)+3\\

& =\left(2\right)^2-4\left(2\right)+3\\

& =-1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 10

Advertisements

PROBLEM:

If  \displaystyle f\left(x\right)=\frac{4}{x+3} and \displaystyle \:g\left(x\right)=x^2-3 , find \displaystyle f\left[g\left(x\right)\right] and \displaystyle g\left[f\left(x\right)\right].


Advertisements

SOLUTION:

Part A

\begin{align*}

f\left[g\left(x\right)\right] & =\frac{4}{\left(x^2-3\right)+3}\\

& =\frac{4}{x^2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Part B

\begin{align*}

g\left[f\left(x\right)\right] & =\left(\frac{4}{x+3}\right)^2-3\\

& =\frac{16}{\left(x+3\right)^2}-3\\

& =\frac{16-3\left(x+3\right)^2}{\left(x+3\right)^2}\\

& =\frac{16-3\left(x^2+6x+9\right)}{\left(x+3\right)^2}\\

& =\frac{16-3x^2-18x-27}{\left(x+3\right)^2}\\

& =\frac{-3x^2-18x-11}{\left(x+3\right)^2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 9

Advertisements

PROBLEM:

If \displaystyle f\left(x\right)=3x^2-4x+1, find \displaystyle \frac{f\left(h+3\right)-f\left(3\right)}{h},\:h\ne 0.


Advertisements

SOLUTION:

\begin{align*}
\frac{f\left(h+3\right)-f\left(3\right)}{h} & =\frac{\left[3\left(h+3\right)^2-4\left(h+3\right)+1\right]-\left[3\left(3\right)^2-4\left(3\right)+1\right]}{h} \\

& =\frac{3\left(h^2+6h+9\right)-4h-12+1-16}{h}\\

& =\frac{3h^2+18h+27-4h-12+1-16}{h}\\

& =\frac{3h^2+14h}{h}\\

& =\frac{h\left(3h+14\right)}{h}\\
& =3h+14 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 8

Advertisements
Advertisements

PROBLEM:

If \displaystyle f\left(x\right)=x^2+1, find \displaystyle \frac{f\left(x+h\right)-f\left(x\right)}{h},\:h\ne 0.


Advertisements
Advertisements

SOLUTION:

\begin{align*}
\displaystyle \frac{f\left(x+h\right)-f\left(x\right)}{h} & =\frac{\left[\left(x+h\right)^2+1\right]-\left(x^2+1\right)\:}{h}\\ \\
& =\frac{x^2+2xh+h^2+1-x^2-1}{h}\\ \\
& =\frac{2xh+h^2}{h}\\ \\
& =\frac{h\left(2x+h\right)}{h}\\ \\
& =2x+h \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 7

Advertisements
Advertisements

PROBLEM:

A right circular cylinder, a radius of base x, height y, is inscribed in a right circular cone, radius of base r and a height h. Express y as a function of x (r and h are constants).


Advertisements
Advertisements

SOLUTION:

Refer to the figure below for an elevation view.

Schematic Diagram of a right circular cylinder inscribed in a right circular cone.
Diagram of a right circular cylinder with a base radius of r and height y inscribed in a right circular cone with base radius r and height h.

By ratio and proportion of two similar triangles, we have

\begin{align*}
\frac{y}{r-x} & = \frac{h}{r} \\
y & =\frac{h\left(r-x\right)\:}{r} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1 Problem 6

Advertisements
Advertisements

PROBLEM:

The stiffness of a beam of rectangular cross-section is proportional to the breadth and the cube of the depth. If the breadth is 20 cm, express the stiffness as a function of the depth.


Advertisements
Advertisements

SOLUTION:

Let S=stiffness, b=breadth, and d=depth

\begin{align*}
S & =bd^3 \\
S & = 20 d^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements