PROBLEM:
The length and width of a rectangular room are measured to be 3.955 ±0.005 m and 3.050 ± 0.005 m . Calculate the area of the room and its uncertainty in square meters.
SOLUTION:
The average area of the room is
\begin{align*} A & =l\times w \\ & =3.955\:\text{m}\times 3.050\:\text{m} \\ & =12.06\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\ \end{align*}
Compute for the percent uncertainties of each dimension.
\begin{align*} \text{\%\:unc}_{width} & =\frac{0.005\:\text{m}}{3.050\:\text{m}}\times 100\%=0.1639\% \\ \text{\%\:unc}_{length} & =\frac{0.005\:\text{m}}{3.955\:\text{m}}\times 100\%=0.1264\:\% \end{align*}
The percent uncertainty in the area is the combined effect of the uncertainties of the length and width.
\text{\%\:unc}_{area}=0.1639\%+0.1264\%=0.2903\%
The uncertainty in the area is
\delta _{area}=\frac{0.2903\:\%}{100\:\%}\times 12.06\:\text{m}^2=0.035\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
Therefore, the area is
A=12.06\pm 0.035\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
You must be logged in to post a comment.