Category Archives: Engineering Mathematics Blog

Problem 2-1: Distance and displacement for a given path A

Advertisements
Advertisements

PROBLEM:

Find the following for path A in the figure:

(a) The distance traveled.

(b) The magnitude of the displacement from start to finish.

(c) The displacement from start to finish.


Advertisements
Advertisements

SOLUTION:

Part A

A travels from 0 to 7. The distance traveled is 7 meters.

Part B

The magnitude of the displacement is 7 meters.

Part C

The displacement is the difference between the final and initial positions.

\begin{align*}
\Delta x & =7\:\text{m}-0\:\text{m}=+7\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\end{align*}

Advertisements
Advertisements

Problem 1-36: The maximum firing rate of a nerve

Advertisements
Advertisements

PROBLEM:

Assuming one nerve impulse must end before another can begin, what is the maximum firing rate of a nerve in impulses per second?


Advertisements
Advertisements

Solution:

One nerve impulse lasts for 10-3 s.

\text{max firing rate}=\frac{1\:\text{nerve impulse}}{10^{-3}\:\text{sec}}=10^3\:\text{impulses/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-35: The approximate number of cells in a hummingbird and in a human

Advertisements
Advertisements

PROBLEM:

(a) Calculate the number of cells in a hummingbird assuming the mass of an average cell is ten times the mass of a bacterium.

(b) Making the same assumption, how many cells are there in a human?


Advertisements
Advertisements

SOLUTION:

Part A

The mass of a hummingbird is 10-2 kg, while the mass of a cell is 10-15 kg. The number of cells in the hummingbird is

\frac{10^{-2}}{10\left(10^{-15}\right)}=10^{12}\:\text{cells} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

The mass of a person is 102 kg.

\frac{10^2}{10\left(10^{-15}\right)}=10^{16}\:\text{cells}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-34: Earth’s diameter vs greatest ocean depth and vs greatest mountain height

Advertisements
Advertisements

PROBLEM:

(a) What fraction of Earth’s diameter is the greatest ocean depth?

(b) The greatest mountain height?


Advertisements
Advertisements

SOLUTION:

Part A

The greatest ocean depth is 104 m, while the earth’s diameter is 107 m

\frac{\text{Ocean's Depth}}{\text{Earth's Diameter}}= \frac{10^4}{10^7}=\frac{1}{1000}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

The highest mountain is also roughly 104 m.

\displaystyle \frac{10^4}{10^7}=\frac{1}{1000}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-33: The number of atoms thick of a cell membrane

Advertisements
Advertisements

PROBLEM:

Approximately how many atoms thick is a cell membrane, assuming all atoms there average about twice the size of a hydrogen atom?


Advertisements
Advertisements

SOLUTION:

The cell membrane is 10-8 m while the hydrogen atom is 10-10  m. The number of atoms in the cell membrane is

\begin{align*}
\text{no. of atoms} & =\frac{\text{d}_{\text{m}}}{2\text{d}_{\text{H}}}\\ \\
& =\frac{10^{-8}}{2\left(10^{-10}\right)} \\ \\
& =50\:\text{atoms} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Problem 1-32: The approximate number of atoms in a bacterium

Advertisements
Advertisements

PROBLEM:

Calculate the approximate number of atoms in a bacterium. Assume that the average mass of an atom in the bacterium is ten times the mass of a hydrogen atom. (Hint: The mass of a hydrogen atom is on the order of 10-27 kg; and the mass of a bacterium is on the order of 10-15 kg)


Advertisements
Advertisements

SOLUTION:

The number of atoms is

\begin{align*}
\text{no. of atoms} & =\frac{m_{bact}}{10\:m_H} \\ \\
& = \frac{10^{-15}}{10\left(10^{-27}\right)}\\\\
&=10^{11}\:\text{atoms} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Problem 1-31: The lifetime of a human vs the mean life of an extremely unstable atomic nucleus

Advertisements
Advertisements

PROBLEM:

How many times longer than the mean life of an extremely unstable atomic nucleus is the lifetime of a human? (Hint: The lifetime of an unstable atomic nucleus is on the order of  10-22 s .)


Advertisements
Advertisements

SOLUTION:

The lifetime of a human is 2×109 s, while the lifetime of an unstable atomic nucleus is 10-22 s.

Therefore, a human lifetime is much longer by

 \frac{T_h}{T_n}=\frac{2\times 10^9\:\text{sec}}{10^{-22}\:\text{sec}}=2\times 10^{31}\:\text{times}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-30: The number of generations passed since the year 0 AD

Advertisements
Advertisements

PROBLEM:

A generation is about one-third of a lifetime. Approximately how many generations have passed since the year 0 AD?


Advertisements
Advertisements

SOLUTION:

We are looking for generations passed in history. The general assumptions are:

  • There are 1011 seconds in 1 history
  • In 1 generation, there is 1/3 of a lifetime.
  • In half a lifetime, there are 109 seconds

Therefore, the number of generations passed is

\begin{align*}
1\ \text{history} & =1\:\text{history}\times \frac{10^{11}\:\text{sec}}{1\:\text{history}}\times \frac{1\:\text{generation}}{\frac{1}{3}\:\text{lifetime}}\times \frac{0.5\:\text{lifetime}}{10^9\:\text{sec}} \\
& =150\:\text{generations} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Problem 1-29: The number of heartbeats in a lifetime

Advertisements
Advertisements

PROBLEM:

How many heartbeats are there in a lifetime?


Advertisements
Advertisements

SOLUTION:

The general assumptions:

  • There is 1 heartbeat in 1 second
  • In half a lifetime, there are 109 seconds.

Therefore, in a lifetime, the number of heartbeats is

\begin{align*}
1\:\text{lifetime} & =\left(1\:\text{lifetime}\right)\left(\frac{10^9\:\text{sec}}{0.5\:\text{lifetime}}\right)\left(\frac{1\:\text{heartbeat}}{1\:\text{sec}}\right) \\
& =2\times 10^9\:\text{heartbeats} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Problem 1-28: Calculating the volume and its uncertainty of a car piston with dimensional uncertainties

Advertisements
Advertisements

PROBLEM:

A car engine moves a piston with a circular cross section of  7.500±0.002 cm diameter a distance of 3.250±0.001 cm  to compress the gas in the cylinder.

(a) By what amount is the gas decreased in volume in cubic centimeters?

(b) Find the uncertainty in this volume.


Advertisements
Advertisements

SOLUTION:

Part A

The average volume is

\begin{align*}
V & =\pi r^2h \\
& =\pi \left(\frac{7.5\:\text{cm}}{2}\right)^2\left(3.25\:\text{cm}\right) \\
& =143.5806\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Part B

Solve for the percent uncertainties of each dimension

\begin{align*}
\%\:unc_r & =\frac{0.002\:\text{cm}}{7.500\:\text{cm}}\times 100\%=0.027\% \\
\%\:unc_h & =\frac{0.001\:\text{cm}}{3.25\:\text{cm}}\times 100\%=0.031\% \\
\end{align*}

The percent uncertainty in the volume is the combined effect of the uncertainties of the dimensions

\text{\%\:unc}_{vol}=0.027\%+0.031\%=0.058\%

The uncertainty in the volume is

 \delta _{vol}=\frac{0.058}{100}\times 143.5806=0.083\:\text{cm}^3  \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements