Category Archives: Engineering Mathematics Blog

Problem 1-8: The speed of sound in km/h

Advertisements
Advertisements

PROBLEM:

The speed of sound is measured to be  342 m/s on a certain day. What is this in km/h?


Advertisements
Advertisements

SOLUTION:

We know that 1 km=1000 m and 1 hr=3600 sec.

Convert 342 m/s.

\begin{align*}
342\:\text{m/s} & =\left(342\:\frac{\bcancel{\text{m}}}{\bcancel{\text{s}}}\right)\left(\frac{1\:\text{km}}{1000\:\bcancel{\text{m}}}\right)\left(\frac{3600\:\bcancel{\text{s}}}{1\:\text{hr}}\right) \\
& =1231.2\:\text{km/hr} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Therefore, the speed of sound in km/hr is 1231.2 km/hr.


Advertisements
Advertisements

Problem 1-7: The height of Mount Everest in kilometers

Advertisements
Advertisements

PROBLEM:

Mount Everest, at 29,028 feet, is the tallest mountain on the Earth. What is its height in kilometers? (Assume that 1 kilometer equals 3,281 feet.)


Advertisements
Advertisements

SOLUTION:

Convert 29028 ft to km

29,028\:\text{ft}=\left(29\:028\:\text{ft}\right)\left(\frac{1\:\text{km}}{3281\:\text{ft}}\right)=8.847\:\text{km} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Therefore, the height of Mount Everest is 8.847 kilometers.


Advertisements
Advertisements

Problem 1-6: The height of a 6 ft 1 in tall person in meters

Advertisements
Advertisements

PROBLEM:

What is the height in meters of a person who is 6 ft 1.0 in. tall? (Assume that 1 meter equals 39.37 in.)


Advertisements
Advertisements

SOLUTION:

First, convert 6 ft to inches

6\:\text{ft}=\left(6\:\text{ft}\right)\left(\frac{12\:\text{in}}{1\:\text{ft}}\right)=72\:\text{in}

Add the 1.0 inch

72\:\text{in}\:+1\:\text{in}=73\:\text{inches}

So, the total height of the person is 73 inches. We convert this to meters to come up with the desired unit.

73\:\text{in}=\left(73\:\text{in}\right)\left(\frac{1\:\text{m}}{39.37\:\text{in}}\right)=1.85\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

So, the height of the person is 1.85 meters.


Advertisements
Advertisements

 

Problem 1-5: Soccer field dimensions in feet and inchess

Advertisements
Advertisements

PROBLEM:

Soccer fields vary in size. A large soccer field is 115 m long and 85 m wide. What are its dimensions in feet and inches?


Advertisements
Advertisements

SOLUTION:

The length in feet and inches are

\begin{aligned}
115\ \text{m} & = 115\ \bcancel{\text{m}} \times \frac{1\ \text{ft}}{0.3048\ \bcancel{\text{m}}} \\ \\
& =377.3\ \text{feet} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\\
115\ \text{m} & = 115\ \bcancel{\text{m}} \times \frac{1\ \bcancel{\text{ft}}}{0.3048\ \bcancel{\text{m}}} \times \frac{12\ \text{inches}}{1\ \bcancel{\text{ft}}} \\ \\
& =4528\ \text{inches} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\end{aligned}

The width in feet and inches are

\begin{aligned}
85\ \text{m} & = 85\ \bcancel{\text{m}} \times \frac{1\ \text{ft}}{0.3048\ \bcancel{\text{m}}}\\ \\
& =278.9\ \text{ft}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\\
85\ \text{m} & = 85\ \bcancel{\text{m}} \times \frac{1\ \bcancel{\text{ft}}}{0.3048\ \bcancel{\text{m}}} \times \frac{12\ \text{in}}{1\ \bcancel{\text{ft}}}\\ \\
& =3346\ \text{inches} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{aligned}

Advertisements
Advertisements

Problem 1-4: The length of the American football field in meters

Advertisements
Advertisements

PROBLEM:

American football is played on a 100-yard-long field, excluding the end zones. How long is the field in meters? (Assume that 1 meter equals 3.281 feet.)


Advertisements
Advertisements

SOLUTION:

\begin{aligned}
100 \ \text{yard} & = 100 \ \bcancel{\text{yard}} \times \frac{3\ \bcancel{\text{feet}}}{1 \ \bcancel{\text{yard}}}\times \frac{1 \ \text{m}}{3.281\ \bcancel{\text{feet}}} \\
\\
& =91.4 \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{aligned}

Advertisements
Advertisements

Problem 1-3: Converting 1.0 m/s to 3.6 km/h

Advertisements
Advertisements

PROBLEM:

Show that 1.0 m/s=3.6 km/h.

Hint: Show the explicit steps involved in converting 1.0 m/s=3.6 km/h.


Advertisements
Advertisements

SOLUTION:

We know that 1 hr = 3600 s, and 1 km = 1000 m.

\begin{aligned}
1.0 \ \text{m/s} & = 1.0 \ \frac{\bcancel{\text{m}}}{ \bcancel{\text{s}}} \times \frac{3600 \ \bcancel{\text{s}}}{1 \ \text{hr}}\times \frac{1 \ \text{km}}{1000 \ \bcancel{\text{m}}} \\
\\
& =3.6 \ \text{km/hr} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

\end{aligned}

Advertisements
Advertisements

Problem 1-2: Converting car speed of 33 m/s to kilometers per hour and determining if it exceeds the speed limit

Advertisements
Advertisements

PROBLEM:

A car is traveling at a speed of 33 m/s.
(a) What is its speed in kilometers per hour?
(b) Is it exceeding the 90 km/h speed limit?


Advertisements
Advertisements

SOLUTION:

Part A

\begin{aligned}
33 \ \text{m/s} & =33\ \frac{\text{m}}{\text{s}} \times \frac{1\ \text{km}}{1000 \ \text{m}} \times \frac{3600\ \text{s}}{1 \ \text{hr}} \\
\\
& =118.8 \ \text{km/hr} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{aligned}

Part B

At 118.8 km/h, the car is traveling faster than the speed limit of 90 km/h. (Answer)


Advertisements
Advertisements

Problem 1-1: Converting 100 km/h to meters per second and miles per hour

Advertisements
Advertisements

PROBLEM:

The speed limit on some interstate highways is roughly 100 km/h.
(a) What is this in meters per second?
(b) How many miles per hour is this?


Advertisements
Advertisements

SOLUTION:

Part A

\begin{aligned}
100 \  \frac{ \text{km}}{\text{hour}} & =100 \ \frac{ \bcancel{\text{km}}}{\bcancel{\text{hour}}} \times \frac{1000 \ \text{m}}{1 \ \bcancel{\text{km}}} \times \frac{1 \ \bcancel{\text{hour}}}{3600 \ \text{sec}}\\
\\
&=27.7 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{aligned}

Part B

\begin{aligned}
100 \  \frac{ \text{km}}{\text{hour}} & =100 \ \frac{ \bcancel{\text{km}}}{\text{hour}} \times\frac{1 \ \text{mile}}{1.609\ \bcancel{\text{km}}} \\
\\
&=62.2 \ \text{mi/hr} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{aligned}
Advertisements
Advertisements

Video Solution:


Advertisements
Advertisements