Category Archives: Engineering Mechanics: Statics

Hibbeler Statics 14E P1.5 — Representing a number between 0.1 and 1000 Using an Appropriate Prefix


Represent each of the following as a number between 0.1 and 1000 using an appropriate prefix: (a) 45 320 kN, (b) 568(105) mm, (c) 0.00563 mg.

Statics of Rigid Bodies 14th by RC Hibbeler, Problem 1-5


Solution:

Part A

\begin{align*}
45 \ 320 \  \text{kN} & = 45.3 \times 10^3 \ \text{kN}\\
& = 45.3\times 10^3\times 10^3 \ \text{N}\\
& = 45.3 \times 10^6 \ \text{N}\\
& = 45.3 \  \text{MN}
\end{align*}

Part B

\begin{align*}
568\left( 10^5 \right)\ \text{mm} & =568\left( 10^5 \right)\times 10^{-3} \ \text{m}\\
& = 568\times 10^2 \ \text{m} \\
& = 56.8 \times 10^3 \ \text{m}\\
& = 56.8 \ \text{km}
\end{align*}

Part C

\begin{align*}
0.00563 \ \text{mg} & = 5.63\times 10^{-3} \ \text{mg}\\
& = 5.63\times 10^{-3}\times 10^{-3} \ \text{g}\\
& = 5.63\times 10^{-6} \ \text{g}\\
& = 5.63 \ \mu\text{g}
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.4 — Conversion from English units to Metric Units


Convert: (a) 200 lb·ft to N·m, (b) 350 lb/ft3 to kN/m3, (c) 8 ft/h to mm/s. Express the result to three significant figures. Use an appropriate prefix.

Statics of Rigid Bodies 14th by RC Hibbeler, Problem 1-4


Solution:

Part A

\begin{align*}
200\ \text{lb}\cdot \text{ft} & =\left( 200\ \text{lb}\cdot \text{ft} \right)\left( \frac{4.4482\ \text{N}}{1\ \text{lb}} \right)\left( \frac{0.3048\ \text{m}}{1\ \text{ft}} \right)\\
&=271\ \text{N}\cdot \text{m}
\end{align*}

Part B

\begin{align*}
350 \ \text{lb/ft}^3& = \left( \frac{350\ \text{lb}}{1\ \text{ft}^3} \right)\left( \frac{1\ \text{ft}}{0.3048\ \text{m}} \right)^3\left( \frac{4.4482\ \text{N}}{1\ \text{lb}} \right)\left( \frac{1\ \text{kN}}{1000\ \text{N}} \right)\\
& = 55.0\ \text{kN/m}^3
\end{align*}

Part C

\begin{align*}
8 \ \text{ft/hr}& = \left( \frac{8\ \text{ft}}{1\ \text{hr}} \right)\left( \frac{1\ \text{hr}}{3600\ \text{s}} \right)\left( \frac{0.3048\ \text{m}}{1\ \text{ft}} \right)\left( \frac{1000 \ \text{mm}}{1 \ \text{m}} \right)\\
& = 0.677\ \text{mm/s}
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.3 — Representing a combination of units in the correct SI form


Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) Mg/ms, (b) N/mm, and (c) mN/(kg・µs).

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-3


Solution:

Part A

\begin{align*}
\text{Mg/ms} & = \frac{10^3 \ \text{kg}}{10^{-3} \ \text{s}} \\
& = 10^6 \text{kg/s}\\
& = \text{Gg/s}
\end{align*}

Part B

\begin{align*}
\text{N/mm} & = \frac{1\ \text{N}}{10^{-3} \ \text{m}}\\
& = 10^3 \ \text{N/m}\\
& = \text{kN/m}
\end{align*}

Part C

\begin{align*}
\frac{\text{mN}}{\left( \text{kg} \cdot \mu \text{s} \right)} & = \frac{10^{-3} \ \text{N}}{10^{-6} \ \text{kg} \cdot \text{s}}\\
& =10^3 \ \text{N}/\left( \text{kg} \cdot \text{s} \right)\\
& = \text{kN}/\left( \text{kg} \cdot  \text{s}\right)
\end{align*}

Advertisements

Statics 3.6 – Equilibrium of Truss Members Connected to a Gusset Plate | Hibbeler 14th Edition


The gusset plate is subjected to the forces of three members. Determine the tension force in member C and its angle θ for equilibrium. The forces are concurrent at point O. Take F=8 kN.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler Problem 3-5 Equilibrium of Truss Members Connected in a Gusset Plate

Continue reading

Statics 3.5 – Equilibrium of Truss Members Connected to a Gusset Plate | Hibbeler 14th Edition


The members of a truss are connected to the gusset plate. If the forces are concurrent at point O, determine the magnitudes of F and T for equilibrium. Take θ=90°.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler Problem 3-5 Equilibrium of Truss Members Connected in a Gusset Plate

Solution:

We need to find the angle that force T makes with the positive x-axis first. We call this the angle beta, β. This is depicted in the free-body diagram.

Free-body diagram:

Solving for the values of angles α and β.

\begin{aligned}
\tan \alpha & = \dfrac{3}{4} \\
\alpha & = \tan ^{-1} \frac{3}{4} \\
\alpha & = 36.8699 \degree \\
\end{aligned}

Knowing that the sum of angles α and β is 90°, we can solve for the β.

\begin{aligned}
\alpha + \beta & = 90\degree \\
\beta & = 90 \degree - \alpha \\
\beta & = 90 \degree - 36.8699 \degree \\
\beta & = 53.1301 \degree
\end{aligned}

Equations of Equilibrium:

Summation of forces in the x-direction:

\begin{aligned}
\xrightarrow{+} \sum F_x & = 0 \\
T \cos \beta - \frac{4}{5} F & = 0 \\
T \cos 53.1301 \degree - \frac{4}{5} F & = 0 & & \qquad \qquad (1)\\
\end{aligned}

Summation of forces in the y-direction:

\begin{aligned}
+\uparrow \sum F_y & =0 \\
9 - \frac{3}{5} F- T \sin \beta & = 0 \\
T \sin 53.1301 \degree + \frac{3}{5}F & = 9 & & \qquad \qquad(2)\\
\end{aligned}

Now, we have two equations with two unknowns. We shall solve the unknowns by solving these equations simultaneously. We can use our calculator, or we can solve this manually using the method of substitution.

Using equation (1), solve for T in terms of F.

\begin{aligned}
T \cos 53.1301\degree-\frac{4}{5} F & = 0 \\
T \cos 53.1301\degree & = \frac{4}{5} F \\
T & = \dfrac{\frac{4}{5}F}{\cos 53.1301\degree}  \qquad \qquad  (3)\\
\end{aligned}

Now, substitute this equation (3) to equation (2) to solve for F:

\begin{aligned}
T \sin 53.1301 \degree + \frac{3}{5}F & = 9 \\
\left(\dfrac{\frac{4}{5}F}{\cos 53.1301\degree} \right) \sin 53.1301 \degree + \frac{3}{5}F & = 9 \\
\frac{4}{5}F \left( \dfrac{\sin 53.1301\degree}{\cos 53.1301\degree}\right)+  \frac{3}{5}F & = 9 \\
\frac{4}{5}F \tan 53.1301\degree+\frac{3}{5}F &=9 \\
F\left( \frac{4}{5} \cdot \tan 53.1301\degree +\frac{3}{5}\right) & = 9\\
F & = \dfrac{9}{\frac{4}{5} \cdot \tan 53.1301\degree +\frac{3}{5}} \\
F & = 5.4 \ \text{kN} \\
\end{aligned}

Substitute the value of F to equation (3) to solve for T:

\begin{aligned}
T & = \dfrac{\frac{4}{5}F}{\cos 53.1301\degree} \\
T & = \dfrac{\frac{4}{5} \cdot \left( 5.4 \ \text{kN}\right)}{\cos 53.1301\degree} \\
T & = 7.2 \ \text{kN}
\end{aligned}

Therefore, F = 5.4 \ \text{kN} and T= 7.2 \ \text{kN} .

Statics 3.4 – Normal Reactions in a Bearing | Hibbeler 14th Edition


The bearing consists of rollers, symmetrically confined within the housing. The bottom one is subjected to a 125-N force at its contact A due to the load on the shaft. Determine the normal reactions NB and NC on the bearing at its contact points B and C for equilibrium.

Engineering Mechanics: Statics 14th Edition Problem 3-4 - The normal reactions on a bearing.

Solution:

Free-body diagram of the roller:

Free-body diagram of Problem 3.4 - Engineering Mechanics Statics 14th Edition by Russell C. Hibbeler| Normal Forces in a Bearing

Equations of Equilibrium:

Note that if we take the sum of forces in the x-direction, there are two unknown forces involve, but if we take the sum of forces in the y-direction, there is only one unknown force involve.

Summation of forces in the y-direction:

\begin{aligned}
+\uparrow \sum F_y & =0& & & & & \\
125- N_C \cos 40 \degree &=0  & & & & &\\
N_C &=\dfrac{125}{\cos 40 \degree} & & & & &  \\
N_C & =163.1759 \ \text{N} \\
\end{aligned}

Summation of forces in the x-direction:

\begin{aligned}
\xrightarrow{+} \sum F_x & =0 \\
N_B - 163.1759\ \sin 40 \degree &=0 \\
N_B &=163.1759 \sin 40\degree \\
N_B & = 104.8874 \ \text{N}
\end{aligned}

Therefore, the normal reactions NB and NC on the bearing at its contact points B and C for equilibrium are 163.1759 N and 104.8874 N, respectively.


Statics 3.2 – Equilibrium of Truss Members that are Pin Connected | Hibbeler 14th Edition


The members of a truss are pin connected at joint O. Determine the magnitude of F1 and its angle θ for equilibrium. Set F2=6 kN.

Figure 3.1: Engineering Mechanics: Statics Equilibrium of Particle
Figure 3.1/3.2

Solution:

Free-body diagram:

Free-body-diagram-for-Problem-3.2 of Engineering Mechanics: Statics by Russell C. Hibbeler

Equations of Equilibrium:

The summation of forces in the x-direction:

\begin{aligned}
\sum F_x & = 0 &\\
6 \sin 70 \degree + F_1 \cos \theta - 5 \cos 30 \degree - \dfrac {4}{5} \left(7 \right) & = 0 & \\
 F_1 \cos \theta & = 4.2920 & (1)
\end{aligned}

The summation of forces in the y-direction:

\begin{aligned}
\sum F_y & =0 & \\
6 \cos 70 \degree+5 \sin 30 \degree - F_1 \sin \theta - \dfrac{3}{5} \left( 7 \right ) & =0 & \\
F_1 \sin \theta &=0.3521 & (2)\\
\end{aligned}

We came up with 2 equations with unknowns F_1 and \theta . To solve the equations simultaneously, we can use the method of substitution.

Using equation 1, solve for F_1 in terms of \theta .

\begin{aligned}
F_1 \cos \theta & = 4.2920  &\\
F_1 & =\dfrac{4.2920}{ \cos \theta } & (3) \\
\end{aligned}

Now, substitute this equation (3) to equation (2).

\begin{aligned}
F_1 \sin \theta & = 0.3521 \\
\left ( \dfrac {4.2920}{\cos \theta} \right) \sin \theta & =0.3521 \\
4.2920 \cdot \dfrac{\sin \theta}{\cos \theta} & = 0.3521 \\
4.2920 \tan \theta & = 0.3521 \\
\tan \theta & = \dfrac{0.3521}{4.2920} \\
\theta &= \tan ^{-1} \dfrac{0.3521}{4.2920} \\
\theta & = 4.69 \degree

\end{aligned}

Substitute the solved value of \theta to equation (3).

\begin{aligned}
F_1 & = \dfrac{4.2920}{\cos \theta} \\
F_1 &= \dfrac{4.2920}{\cos 4.69 \degree} \\
F_1 & = 4.31 \text{kN}
\end{aligned}

Therefore, the answers to the questions are:

\begin{aligned}
F_1= & \:4.31 \: \text {kN} \\
\theta = & \: 4.69 \degree
\end{aligned} 

Statics 3.1 – Equilibrium of Truss Members in Pin Connection | Hibbeler 14th Edition


The members of a truss are pin connected at joint O. Determine the magnitudes of F1 and F2 for equilibrium. Set θ=60.

Figure 3.1: Engineering Mechanics: Statics Equilibrium of Particle
Figure 3.1

Solution:

Free-body diagram:

Free-Body Diagram for Problem 3.1 of Engineering Mechanics: Statics 14th Edition by Russell C. Hibbeler

Equations of Equilibrium:

Take the sum of horizontal forces considering forces to the right positive, and equate to zero.

\begin {aligned}


\sum{F}_x &= 0 & \\

F_1 \cos{60 \degree}+F_2 \sin{70 \degree}-5\cos{30 \degree}-\dfrac{4}{5}\left(7\right) &= 0 &\\

0.5F_1+0.9397F_2&=9.9301 &(1)\\

\end {aligned}

Take the sum of vertical forces considering upward forces positive, and equate to zero.

\begin{aligned}

\sum F_y&=0 &\\

-F_1\sin60\degree+F_2\cos70\degree+5\sin30\degree-\dfrac{3}{5}\left(7\right)&=0 &\\

-0.8660F_1+0.3420F_2&=1.7 &(2)\\

\end{aligned}

Now, we have two equations with two unknowns F_1 and F_2 . So, we have a system of two equations. We can solve this using algebra, or we can directly use our calculator with this capability. The answers are

F_1=1.83 \: \text{kN}\\
F_2=9.60 \: \text{kN}

Chapter 3: Equilibrium of a Particle

Coplanar Force Systems

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Three-Dimensional Force Systems

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Problem 65

Problem 66

Problem 67


Electrical Transmission Towers Background for Force Vectors Statics of Rigid Bodies

Chapter 2: Force Vectors

Vector Addition of Forces

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Addition of a System of Coplanar Forces

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

Cartesian Vectors | Addition of Cartesian Vectors

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Problem 65

Problem 66

Problem 67

Problem 68

Problem 69

Problem 70

Problem 71

Problem 72

Problem 73

Problem 74

Problem 75

Problem 76

Problem 77

Problem 78

Problem 79

Problem 80

Problem 81

Problem 82

Problem 83

Problem 84

Problem 85

Force Vector Directed Along a Line

Problem 86

Problem 87

Problem 88

Problem 89

Problem 90

Problem 91

Problem 92

Problem 93

Problem 94

Problem 95

Problem 96

Problem 97

Problem 98

Problem 99

Problem 100

Problem 101

Problem 102

Problem 103

Problem 104

Problem 105

Dot Product

Problem 106

Problem 107

Problem 108

Problem 109

Problem 110

Problem 111

Problem 112

Problem 113

Problem 114

Problem 115

Problem 116

Problem 117

Problem 118

Problem 119

Problem 120

Problem 121

Problem 122

Problem 123

Problem 124

Problem 125

Problem 126

Problem 127

Problem 128

Problem 129

Problem 130

Problem 131

Problem 132

Problem 133

Problem 134

Problem 135

Problem 136

Problem 137

Problem 138

Problem 139