Category Archives: Sciences

Includes Engineering Sciences such as Statics, Dynamics, Strength of Materials, Physics, Fluid Mechanics, Chemistry

College Physics by Openstax Chapter 3 Problem 36


The world long jump record is 8.95 m (Mike Powell, USA, 1991). Treated as a projectile, what is the maximum range obtainable by a person if he has a take-off speed of 9.5 m/s? State your assumptions.


Solution:

We are required to solve for the maximum distance. To do this, we can use the formula for the range of a projectile motion. However, we need the following assumptions:

  • The jumper leaves the ground in a 45° angle from the horizontal, for maximum horizontal displacement.
  • The jumper is on level ground, and the motion started from the ground.

The formula for range is

\text{R}=\frac{\text{v}_{\text{o}}^2\sin 2\theta _{\text{o}}}{\text{g}}

Since we are already given the necessary details, we can now solve for the range.

\begin{align*}
 \text{R}&=\frac{\left(9.5\:\text{m/s}\right)^2\:\sin 90^{\circ} }{9.81\:\text{m/s}^2}\\
\text{R}&=9.20\:\text{m}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ 
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 35


In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)


Solution:

We are required to solve for the distance in a standing broad jump. To do this, we can use the formula for the range of a projectile motion. However, we need the following assumptions:

  • The jumper leaves the ground in a 45° angle from the horizontal, for maximum horizontal displacement.
  • The jumper is on level ground.

The formula for the range is

\text{R}=\frac{\text{v}_{\text{o}}^2\:\sin 2\theta _{\text{o}}}{\text{g}}

To find the initial velocity of the jump, vo, we shall use the kinematic formula from the crouch position to the time the person leaves the ground.

\text{v}_{\text{f}}^2=\text{v}_{\text{o}}^2+2\text{ax}

In this case, the final velocity will be the initial velocity of the jump.

\begin{align*}
 \text{v}_{\text{f}}=\sqrt{\left(0\:\text{m/s}\right)^2+2\left(1.25\times 9.81\:\text{m/s}^2\right)\left(0.600\:\text{m}\right)}=3.84\:\text{m/s}
\end{align*}

So, the initial velocity of the flight is 3.84 m/s. We can now use the formula for range.

\begin{align*}
\text{R}&=\frac{\text{v}_{\text{o}}^2\:\sin 2\theta_{\text{o}}}{\text{g}} \\
\text{R}&=\frac{\left(3.84\:\text{m/s}\right)^2\:\sin \left(2\times 45^{\circ} \right)}{9.81\:\text{m/s}^2}\\
\text{R}&=1.50\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 34


An arrow is shot from a height of 1.5 m toward a cliff of height H . It is shot with a velocity of 30 m/s at an angle of 60º above the horizontal. It lands on the top edge of the cliff 4.0 s later.
(a) What is the height of the cliff?
(b) What is the maximum height reached by the arrow along its trajectory?
(c) What is the arrow’s impact speed just before hitting the cliff?


Solution:

Consider the following illustration:

An arrow shot at a height of 1.5 m towards a cliff of height H

Part A

We are required to solve for the value of H. We shall use the formula

\Delta \text{y}=\text{v}_{\text{0y}}\text{t}+\frac{1}{2}\text{at}^2

or, we can also write the formula as

 \text{y}-\text{y}_0=\text{v}_{\text{0y}}\text{t}+\frac{1}{2}\text{at}^2

Substituting the given values, we have

\begin{align*}
 \text{y}-\text{y}_0 &=\text{v}_{\text{0y}}\text{t}+\frac{1}{2}\text{at}^2 \\

\text{H}-1.5\:\text{m} & =\left(30\:\text{m/s}\:\sin 60^{\circ} \right)\left(4.0\:\text{s}\right)+\frac{1}{2}\left(-9.81\:\text{m/s}^2\right)\left(4.0\:\text{s}\right)^2 \\

\text{H}-1.5\:\text{m} & =25.44\:\text{m} \\

\text{H} & =25.44\:\text{m}+1.5\:\text{m} \\

\text{H} & =26.94\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}
Advertisements

Part B

The maximum height of the projectile is given by the formula

\Delta \text{y}=\frac{\text{v}_{\text{0y}}^2}{2\text{g}}

or the formula can be written as

\text{y}_{\text{max}}-\text{y}_{\text{0}}=\frac{\text{v}_{\text{0y}}^2}{-2\text{g}}

Therefore, we have

\begin{align*}
\text{y}_{\text{max}}-\text{y}_{\text{0}} & =\frac{\text{v}_{\text{0y}}^2}{-2\text{g}} \\

\text{y}_{\text{max}}& =\frac{\text{v}_{\text{0y}}^2}{-2\text{g}}+\text{y}_{\text{0}} \\

\text{y}_{\text{max}}&=\frac{\left(\left(30\:\text{m/s}\right)\sin 60^{\circ} \right)^2}{-2\left(-9.81\:\text{m/s}^2\right)}+1.5\:\text{m} \\

\text{y}_{\text{max}}&=34.40\:\text{m}+1.5\:\text{m} \\

\text{y}_{\text{max}} & =35.90\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}
Advertisements

Part C

To solve for the final speed, we need the vertical and horizontal components when the arrow hits the cliff.

We are going to use the formula for acceleration along the vertical to solve for the final speed in the vertical direction. That is

\text{a}=\frac{\text{v}_{\text{y}}-\text{v}_{\text{0y}}}{\text{t}}

Solving for vfy in terms of the other variables, we have

\begin{align*}
\text{v}_{\text{y}}&=\text{v}_{\text{0y}}+\text{at}\\
\text{v}_{\text{y}}&=\left(30\:\text{m/s}\right)\sin 60^{\circ} +\left(-9.81\:\text{m/s}^2\right)\left(4.0\:\text{s}\right) \\
 \text{v}_{\text{y}}&=-13.25\:\text{m/s}
\end{align*}

Since we know that the horizontal component of the velocity does not change along the entire flight, we can equate the initial and final horizontal velocities. That is

\begin{align*}
\text{v}_{\text{x}}&=\text{v}_{\text{0x}}=\left(30\:\text{m/s}\right)\cos 60^{\circ} \\
\text{v}_{\text{x}}&=15\:\text{m/s}
\end{align*}

Therefore, the final speed is

\begin{align*}
\text{v}&=\sqrt{\text{v}_{\text{y}}^2+\text{v}_{\text{x}}^2} \\
\text{v}&=\sqrt{\left(-13.25\:\text{m/s}\right)^2+\left(15\:\text{m/s}\right)^2}\\
\text{v}&=20.01\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 33


The cannon on a battleship can fire a shell a maximum distance of 32.0 km. (a) Calculate the initial velocity of the shell. (b) What maximum height does it reach? (At its highest, the shell is above 60% of the atmosphere—but air resistance is not really negligible as assumed to make this problem easier.) (c) The ocean is not flat, because the Earth is curved. Assume that the radius of the Earth is 6.37×103 km . How many meters lower will its surface be 32.0 km from the ship along a horizontal line parallel to the surface at the ship? Does your answer imply that error introduced by the assumption of a flat Earth in projectile motion is significant here?


Solution:

Part A

We are given the range of the projectile motion. The range is 32.0 km. We also know that for the projectile to reach its maximum distance, it should be fired at 45°. So from the formula of range,

\displaystyle \text{R}=\frac{\text{v}_0^2\:\sin 2\theta _0}{\text{g}}

we can say that \sin 2\theta _0=\sin \left(2\times 45^{\circ} \right)=\sin 90^{\circ} =1. So, we have

\displaystyle \text{R}=\frac{\text{v}_0^2}{\text{g}}

We can solve for v0 in terms of the other variables. That is

\displaystyle \text{v}_0=\sqrt{\text{gR}}

Substituting the given values, we have

\begin{align*}
\displaystyle \text{v}_0 & =\sqrt{\left(9.81\:\text{m/s}^2\right)\left(32\times 10^3\:\text{m}\right)} \\
\displaystyle \text{v}_0 & =560.29\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\end{align*}

Part B

We are solving for the maximum height here, which happened at the mid-flight of the projectile. The vertical velocity at this point is zero. Considering all this, the formula for the maximum height is derived to be

\displaystyle \text{h}_{\text{max}}=\frac{\text{v}_{0_y}^2}{2\text{g}}

The initial vertical velocity, v0y, is calculated as

\begin{align*}
\text{v}_{\text{0y}} & =\text{v}_0\sin \theta _0 \\
& =\left(560.29\:\text{m/s}\right)\sin 45^{\circ}  \\
& =396.18\:\text{m/s}
\end{align*}

Therefore, the maximum height is

\begin{align*}
\text{h}_{\text{max}} & =\frac{\left(396.18\:\text{m/s}\right)^2}{2\left(9.81\:\text{m/s}^2\right)} \\
\text{h}_{\text{max}} & =8000\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\

\end{align*}

Part C

Consider the following figure

A right triangle is formed with the legs, the horizontal distance and the radius of the earth, and the hypotenuse is the sum of the radius of the earth and the distance d, which is the unknown in this problem. Using Pythagorean Theorem, and converting all units to meters, we have

\begin{align*}
\text{R}^2+\left(32.0\times 10^3\:\text{m}\right)^2 & =\left(\text{R}+\text{d}\right)^2 \\
\left(6.37\times 10^6\:\text{m}\right)^2+\left(32.0\times 10^3\:\text{m}\right)^2 & =\left(6.37\times 10^6+\text{d}\right)^2 \\
\text{d} & =\sqrt{\left(6.37\times \:10^6\:\right)^2+\left(32.0\times 10^3\:\right)^2}-6.37\times \:10^6 \\
\text{d} & =80.37\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

This error is not significant because it is only about 1% of the maximum height computed in Part B.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 32


Verify the ranges shown for the projectiles in Figure 3.40(b) for an initial velocity of 50 m/s at the given initial angles.


Solution:

To verify the given values in the figure, we need to solve for individual ranges for the given initial angles. To do this, we shall use the formula

\displaystyle \text{R}=\frac{\text{v}_{\text{0}}^2 \sin 2\theta _{\text{0}}}{\text{g}}

When the initial angle is 15°, the range is

\displaystyle \text{R}=\frac{\left(50\:\text{m/s}\right)^2\:\sin \left(2\times 15^{\circ} \right)}{9.81\:\text{m/s}^2}=127.42\:\text{m}

When the initial angle is 45°, the range is

\displaystyle \text{R}=\frac{\left(50\:\text{m/s}\right)^2\:\sin \left(2\times 45^{\circ} \right)}{9.81\:\text{m/s}^2}=254.84\:\text{m}

When the initial angle is 75°, the range is

\displaystyle \text{R}=\frac{\left(50\:\text{m/s}\right)^2\:\sin \left(2\times 75^{\circ} \right)}{9.81\:\text{m/s}^2}=127.42\:\text{m}

Based on the result of the calculations, we can say that the numbers in the figure are verified. The very small differences are only due to round-off errors.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 31


Verify the ranges for the projectiles in Figure 3.40(a) for θ=45º and the given initial velocities.


Solution:

To verify the given values in the figure, we need to solve for individual ranges for the given initial velocities. To do this, we shall use the formula

\text{R}=\frac{\text{v}_{\text{0}}^2\:\sin 2\theta _{\text{0}}}{\text{g}}

When the initial velocity is 30 m/s, the range is

\text{R}=\frac{\left(30\:\text{m/s}\right)^2\:\sin \left(2\times 45^{\circ} \right)}{9.81\:\text{m/s}^2}=91.74\:\text{m}

When the initial velocity is 40 m/s, the range is

\text{R}=\frac{\left(40\:\text{m/s}\right)^2\:\sin \left(2\times 45^{\circ} \right)}{9.81\:\text{m/s}^2}=163.10\:\text{m}

When the initial velocity is 50 m/s, the range is

\text{R}=\frac{\left(50\:\text{m/s}\right)^2\:\sin \left(2\times 45^{\circ} \right)}{9.81\:\text{m/s}^2}=254.84\:\text{m}

Based on the results, we can say that the ranges are approximately equal. The differences are only due to round-off errors.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 30


A rugby player passes the ball 7.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 12.0 m/s, assuming that the smaller of the two possible angles was used? (b) What other angle gives the same range, and why would it not be used? (c) How long did this pass take?


Solution:

To illustrate the problem, consider the following figure:

A player passes the ball 7 meters across the field with an initial velocity of 12 m/s

Part A

We are given the 7-meter range, R, and the initial velocity, vo, of the projectile. We have R=7.0 m, and vo=12.0 m/s. To solve for the angle of the initial velocity, we will use the formula for range

\text{R}=\frac{\text{v}^{2}_{\text{o}}\sin 2\theta _{\text{o}}}{g}

Solving for θo in terms of the other variables, we have

\begin{align*}
\text{gR} & =\text{v}_{\text{o}}^2\sin 2\theta _{\text{o}} \\
\sin 2\theta _{\text{o}} & =\frac{\text{gR}}{\text{v}_{\text{o}}^2} \\
2\theta _\text{o} & =\sin ^{-1}\left(\frac{\text{gR}}{\text{v}_{\text{o}}^2}\right) \\
\theta _\text{o} & =\frac{1}{2}\sin ^{-1}\left(\frac{\text{gR}}{\text{v}_{\text{o}}^2}\right) \\
\end{align*}

Substituting the given values, we have

\begin{align*}
\theta _\text{o} & =\frac{1}{2} \sin ^{-1}\left[\frac{\left(9.81\text{m/s}^2\right)\left(7.0\text{m}\right)}{\left(12.0\text{m/s}\right)^2}\right] \\

\theta _\text{o} & =14.2^{\circ}

\qquad \qquad{\color{DarkOrange} \left( \text{Answer} \right)} \\
\end{align*}

Part B

The other angle that would give the same range is actually the complement of the solved angle in Part A. The other angle,

\theta _o'=90^{\circ} -14.24^{\circ} =75.8^{\circ} \qquad \qquad{\color{DarkOrange} \left( \text{Answer} \right)} \\

This angle is not used as often, because the time of flight will be longer. In rugby that means the defense would have a greater time to get into position to knock down or intercept the pass that has the larger angle of release.

Part C

We can use the x-component of the motion to solve for the time of flight.

\Delta \text{x}=\text{v}_\text{x}\text{t}

We need the horizontal component of the velocity. We should be able to solve for the component since we are already given the initial velocity and the angle.

\text{v}_{\text{x}}=\left(12\:\text{m/s}\right)\cos 14.24^{\circ} =11.63\:\text{m/s}

Therefore, the total time of flight is

\begin{align*}
\text{t} & =\frac{\Delta \text{x}}{\text{v}_{\text{x}}} \\
\text{t} & =\frac{7.0\:\text{m}}{11.63\:\text{m/s}} \\
\text{t} & =0.60\:\text{s}

\qquad \qquad{\color{DarkOrange} \left( \text{Answer} \right)} \\
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 29


An archer shoots an arrow at a 75.0 m distant target; the bull’s-eye of the target is at same height as the release height of the arrow. (a) At what angle must the arrow be released to hit the bull’s-eye if its initial speed is 35.0 m/s? In this part of the problem, explicitly show how you follow the steps involved in solving projectile motion problems. (b) There is a large tree halfway between the archer and the target with an overhanging horizontal branch 3.50 m above the release height of the arrow. Will the arrow go over or under the branch?


Solution:

To illustrate the problem, consider the following figure:

The archer and the target at 75 meter range

Part A

We are given the range of 75-meter range, R, and the initial velocity, vo, of the projectile. We have R=75.0 m, and vo=35.0 m/s. To solve for the angle of the initial velocity, we will use the formula for range

\text{R}=\frac{\text{v}^{2}_{\text{o}}\:\sin 2\theta _{\text{o}}}{g}

Solving for θo in terms of the other variables, we have

\begin{align*}

\text{gR} & =\text{v}_{\text{o}}^2\:\sin 2\theta _{\text{o}} \\
\sin \:2\theta _{\text{o}} & =\frac{\text{gR}}{\text{v}_{\text{o}}^2} \\
2\theta _\text{o} & =\sin ^{-1}\left(\frac{\text{gR}}{\text{v}_{\text{o}}^2}\right) \\
\theta _\text{o} & =\frac{1}{2}\sin ^{-1}\left(\frac{\text{gR}}{\text{v}_{\text{o}}^2}\right) \\
\theta _o & =\frac{1}{2}\sin ^{-1}\left[\frac{\left(9.81\:\text{m/s}^2\right)\left(75.0\:\text{m}\right)}{\left(35.0\:\text{m/s}\right)^2}\right] \\
\theta _o & =18.46^{\circ} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
 
\end{align*}

Part B

We know that halfway, the maximum height of the projectile occurs. Also at this instant, the vertical velocity is zero. We can solve for the maximum height and compare it with the given height of 3.50 meters.

The maximum height can be computed using the formula

\text{h}_{\text{max}}=\frac{\text{v}_{\text{oy}}^2}{2\text{g}}

To compute for the maximum height, we need the initial vertical velocity, voy. Since we know the magnitude and direction of the initial velocity, we have

\begin{align*}

\text{v}_{\text{oy}} & =\left(35.0\:\text{m/s}\right)\sin 18.46^{\circ} \\
\text{v}_{\text{oy}} & =11.08\:\text{m/s}
 
\end{align*}

Therefore, the maximum height is

\begin{align*}

\text{h}_{\max } & =\frac{\left(11.08\:\text{m/s}\right)^2}{2\left(9.81\:\text{m/s}^2\right)} \\
\text{h}_{\max } & =6.26\:\text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

 
\end{align*}

We have known that the path of the arrow is above the branch of the tree. Therefore, the arrow will go through.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 28


(a) A daredevil is attempting to jump his motorcycle over a line of buses parked end to end by driving up a 32º ramp at a speed of 40.0 m/s (144 km/h) . How many buses can he clear if the top of the takeoff ramp is at the same height as the bus tops and the buses are 20.0 m long? (b) Discuss what your answer implies about the margin of error in this act—that is, consider how much greater the range is than the horizontal distance he must travel to miss the end of the last bus. (Neglect air resistance.)


Solution:

To illustrate the problem, consider the following figure:

The projectile path of the daredevil from the ramp

Part A

To determine the number of buses that the daredevil can clear, we will divide the range of the projectile path by 20 m, the length of 1 bus. That is

\text{no. of bus}=\frac{\text{Range}}{\text{bus length}}

First, we need to solve for the range.

\begin{align*}
\text{Range} & =\frac{\text{v}_{\text{o}}^2\:\sin 2\theta }{\text{g}} \\
\text{Range} & =\frac{\left(40.0\:\text{m/s}\right)^2\sin \left[2\left(32^{\circ} \right)\right]}{9.81\:\text{m/s}^2} \\
\text{Range} & =146.7\:\text{m} \\

\end{align*}

Therefore, the number of buses cleared is

\begin{align*}
\text{no. of buses} & =\frac{146.7\:\text{m}}{20\:\text{m}} \\
\text{no. of buses} & =7.34\:\text{buses} \\
\text{no. of buses} & =7\:\text{buses}

\qquad \qquad{\color{DarkOrange} \left( \text{Answer} \right)} \\
\end{align*}

Therefore, he can only clear 7 buses. 

Part B

He clears the last bus by 6.7 m, which seems to be a large margin of error, but since we neglected air resistance, it really isn’t that much room for error.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 27


A ball is thrown horizontally from the top of a 60.0-m building and lands 100.0 m from the base of the building. Ignore air resistance. (a) How long is the ball in the air? (b) What must have been the initial horizontal component of the velocity? (c) What is the vertical component of the velocity just before the ball hits the ground? (d) What is the velocity (including both the horizontal and vertical components) of the ball just before it hits the ground?


Solution:

To illustrate the problem, consider the following figure:

The path of the ball thrown at the top of a 60 m building.

Part A

The problem states that the initial velocity is horizontal, this means that the initial vertical velocity is zero. We are also given the height of the building (which is a downward displacement), so we can solve for the time of flight using the formula y=voyt+1/2at2. That is,

\begin{align*}
\text{y} & =\text{v}_{\text{oy}}\text{t}+\frac{1}{2}\text{a}\text{t}^2 \\
 -60\:\text{m}&=0+\frac{1}{2}\left(-9.81\:\text{m/s}^2\right)\text{t}^2 \\
\text{t}^2 & =\dfrac{-60\:\text{m}}{-4.905\:\text{m/s}^2} \\
\text{t}^2 & =12.2324\:\text{s}^2 \\
\text{t} & =3.50\:\text{s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

Part B

To solve for the vox, we will use the formula \text{v}_{\text{ox}}=\frac{\Delta \:\text{x}}{\text{t}}.

\begin{align*}
\text{v}_{\text{ox}} & =\frac{100\:\text{m}}{3.50\:\text{s}} \\
\text{v}_{\text{ox}} & =28.6\:\text{m/s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Part C

To solve for the velocity as the ball hits the ground, we shall consider two points: (1) at the beginning of the flight, and (2) when the ball hits the ground.

We know that the initial velocity, voy, is zero. To solve for the final velocity, we will use the formula \text{v}_{\text{f}}=\text{v}_{\text{o}}+\text{at}.

\begin{align*}
\text{v}_{\text{f}} & =0+\left(-9.81\:\text{m/s}^2\right)\left(3.50\:\text{s}\right) \\
\text{v}_{\text{f}} & =-34.3\:\text{m/s}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The negative velocity indicates that the motion is downward.

Part D

Since we already know the horizontal and vertical components of the velocity when it hits the ground, we can find the resultant.

\begin{align*}
\text{v} & =\sqrt{\text{v}_{\text{x}}^2+\text{v}_{\text{y}}^2} \\
\text{v} & =\sqrt{\left(28.57\:\text{m/s}\right)^2+\left(-34.34\:\text{m/s}\right)^2} \\
\text{v} & =44.7\:\text{m/s}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The direction of the velocity is

\begin{align*}
\theta_{\text{x}} & =\tan ^{-1}\left|\frac{\text{v}_{\text{y}}}{\text{v}_{\text{x}}}\right| \\
\theta _{\text{x}} & =\tan ^{-1}\left|\frac{-34.34}{28.57}\right| \\
\theta _{\text{x}} & =50.2^{\circ}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The velocity is directed 50.2° down the x-axis.


Advertisements
Advertisements