Problem 1
The shaft with a circular cross-section is supported by two bearings at O and C. The bearings do not exert any moments or axial force on the shaft, and they act to constrain motion along the and axes. Find the minimum diameter required for the shaft if the maximum normal stress in the shaft cannot exceed . All dimensions are in .

Problem 2
The beam shown in the figure is simply supported at and , and has a circular cross-section with a diameter of . The distributed force acts at an angle of to the axis and has components only along the and axis. The force acts parallel to the axis and the force acts parallel the axis. , and .

(a) Draw shear force and bending moment diagrams for the and planes.
(b) Determine the maximum tensile and compressive bending stress in the beam and show their locations on the cross-section of the beam.
Problem 3
The following steel structure will be made with a round bar in diameter, such that section is parallel to the -axis and section is parallel to -axis.

An unknown moment parallel to is applied at point , where there is also a spherical (ball) hinge, which constraints translations along , , and axes. The plane hinge at is contained in the plane, which means that it constrains translations along the and axes. The force of at goes in , the force of at goes in and the force of at goes in . Given these conditions and the coordinate system provided, find:
(a) Diagrams of axial force, bending moment, and torsion moments for sections and . Use the given coordinate system to label the planes where you are making your internal reaction diagrams (, or ) and draw the corresponding axes.
(b) Calculate the maximum normal stress due to bending in this structure. Show in a diagram the point(s) in the cross-section of the structure where this stress occurs, and include the bending moments in each axis, the resultant moment, and the neutral axis. Use the given coordinate system to show the orientation of your diagram.
(c) Calculate the maximum shear stress due to torsion in this structure. Show in a diagram the point(s) in the cross-section of the structure where this stress occurs, including the torsion moment. Use the given coordinate system to show the orientation of your diagram.
Purchase the Solution to this Homework Now!

Homework 2 in MEE 322: Structural Mechanics
This is the complete solution manual to the problems in Homework 2 of ME322: Structural Mechanics. The 3 problems included in the manual are written above. The PDF document will be sent to your email address within 24 hours from the time of purchase. The email will be coming from homeworkhelp@engineering-math.org Do not forget to check on your spam folder. If you have not received your file in 24 hours, kindly send us an email at help@engineering-math.org
$20.00
You must be logged in to post a comment.