Tag Archives: acceleration from motion diagram

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Exercise and Problems 3


You’re driving along the highway at 60 mph until you enter a town where the speed limit is 30 mph. You slow quickly, but not instantly, to 30 mph. Draw a basic motion diagram of your car, using images from the movie, from 30 s before reaching the city limit until 30 s afterward.


Continue reading

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Exercise and Problems 2


A rocket is launched straight up. Draw a basic motion diagram, using the images from the movie, from the moment of liftoff until the rocket is at an altitude of 500 m.


Continue reading

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Exercise and Problems 1


A car skids to a halt to avoid hitting an object in the road. Draw a basic motion diagram, using the images from the movie, from the time the skid begins until the car is stopped.


Continue reading

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Conceptual Question 8


Determine the signs (positive or negative) of the position, velocity, and acceleration for the particle in Figure Q1.8.

Figure Q1.8

Continue reading

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Conceptual Question 7


Determine the signs (positive or negative) of the position, velocity, and acceleration for the particle in Figure Q1.7.

Figure Q1.7

Continue reading

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Conceptual Question 6


Determine the signs (positive or negative) of the position, velocity, and acceleration for the particle in Figure Q1.6.

Figure Q1.6

Continue reading

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Conceptual Question 5


Does the object represented in Figure Q1.5 have a positive or negative value of \displaystyle a_y? Explain.

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Conceptual Question 5

Figure Q1.5


Continue reading

Physics for Scientists and Engineers 3rd Edition by Randall Knight, Chapter 1 Conceptual Question 4


Does the object represented in Figure Q1.4 have a positive or negative value of \displaystyle a_x? Explain.

Figure Q1.4 Physics for Scientists and Engineers 3rd Edition by Randall Knight

Figure Q1.4


Continue reading

College Physics by Openstax Chapter 2 Problem 36


An express train passes through a station. It enters with an initial velocity of 22.0 m/s and decelerates at a rate of  0.150 m/s2 as it goes through.  The station is 210 m long.

(a) How long is the nose of the train in the station?

(b) How fast is it going when the nose leaves the station?

(c) If the train is 130 m long, when does the end of the train leave the station?

(d) What is the velocity of the end of the train as it leaves?


Solution:

Part A

We are given the following: v_0=22.0\:\text{m/s}; a=-0.150\:\text{m/s}^2; and \Delta x=210\:\text{m}

We are required to solve for time, t. We are going to use the formula

\Delta x=v_0t+\frac{1}{2}at^2

Substituting the given values, we have

\begin{align*}
\Delta x & =v_0t+\frac{1}{2}at^2 \\
210\:\text{m} & =\left(22.0\:\text{m/s}\right)t+\frac{1}{2}\left(-0.150\:\text{m/s}^2\right)t^2
\end{align*}

If we simplify and rearrange the terms into a general quadratic equation, we have

0.075t^2-0.22t+210=0

Solve for t using the quadratic formula. We are given a=0.075;\:b=-22t;\:c=210.

\begin{align*}
t & =\frac{-b\pm \sqrt{b^2-4ac}}{2a} \\
t& =\frac{-\left(-22\right)\pm \sqrt{\left(-22\right)^2-4\left(0.075\right)\left(210\right)}}{2\left(0.075\right)}\\
\end{align*}

There are two values of t that can satisfy the quadratic equation.

t=9.88\ \text{s} \qquad \text{and} \qquad t=283.46 \ \text{s}

Discard t=283.46 \ \text{s} as it can be seen from the problem that this is not a feasible solution. So, we have

t=9.88\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

We have the same given values from part a. We are going to solve v_f in the formula

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

So we have

\begin{align*}
\left(v_f\right)^2 & =\left(v_0\right)^2+2a\Delta x \\
v_f & =\sqrt{\left(v_0\right)^2+2a\Delta x} \\
v_f & =\sqrt{\left(22.0\:\text{m/s}\right)^2+2\left(-0.150\:\text{m/s}^2\right)\left(210\:\text{m}\right)} \\
v_f & =20.6\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part C

We are given the same values as in the previous parts, except that for the value of \Delta x since we should incorporate the length of the train. For the distance, \Delta x, we have

\begin{align*}
\Delta x & =210\:\text{m}+130\:\text{m} \\
\Delta x & = 340 \ \text{m}
\end{align*}

To solve for time t, we are going to use the formula

\Delta x=v_ot+\frac{1}{2}at^2

If we rearrange the formula into a general quadratic equation and solve for t using the quadratic formula, we come up with

t=\frac{-v_0\pm \sqrt{v_0^2+2ax}}{a}

Substituting the given values:

\begin{align*}
t & =\frac{-v_0\pm \sqrt{v_0^2+2ax}}{a} \\
t & =\frac{-\left(22.0\:\text{m/s}\right)\pm \sqrt{\left(22.0\:\text{m/s}\right)^2+2\left(-0.150\:\text{m/s}^2\right)\left(340\:\text{m}\right)}}{-0.150\:\text{m/s}^2} \\
t &=16.4\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part D

We have the same given values. We are going to solve for v_f in the equation

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta x

Substituting the given values:

\begin{align*}
\left(v_f\right)^2 & =\left(v_0\right)^2+2a\Delta x \\
v_f & =\sqrt{\left(v_0\right)^2+2a\Delta x} \\
v_f & =\sqrt{\left(22.0\:\text{m/s}\right)^2+2\left(-0.150\:\text{m/s}^2\right)\left(340\:\text{m}\right)} \\
v_f & =19.5\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements