Measuring the mass of an Austronaut| Newton’s Second Law of Motion: Concept of a System| Dynamics| College Physics| Problem 4.4

PROBLEM:

Since astronauts in orbit are apparently weightless, a clever method of measuring their masses is needed to monitor their mass gains or losses to adjust diets. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted and the astronaut’s acceleration is measured to be 0.893 m/s²
(a) Calculate her mass.
(b) By exerting a force on the astronaut, the vehicle in which they orbit experiences an equal and opposite force. Discuss how this would affect the measurement of the astronaut’s acceleration. Propose a method in which the recoil of the vehicle is avoided.

Continue reading “Measuring the mass of an Austronaut| Newton’s Second Law of Motion: Concept of a System| Dynamics| College Physics| Problem 4.4”

Skateboarder on a ramp| Physics

A skateboarder starts up a 1.0-m-high, 30° ramp at a speed of 6.9 m/s. The skateboard wheels roll without friction. At the top, she leaves the ramp and sails through the air.

A) How far from the end of the ramp does the skateboarder touch down?

Continue reading “Skateboarder on a ramp| Physics”

Angular Acceleration| Circular Motion| Physics

Your car tire is rotating at 4.0 rev/s when suddenly you press down hard on the accelerator. After traveling 300 m, the tire’s rotation has increased to 6.5 rev/s . The radius of the tire is 32 cm.

A) What was the tire’s angular acceleration? Give your answer in rad/s²?

Continue reading “Angular Acceleration| Circular Motion| Physics”