What is the ideal speed to take a 100 m radius curve banked at a 20.0° angle?
Solution:
The formula for the ideal speed on a banked curve can be derived from the formula of the ideal angle. That is, starting from \tan \theta = \frac{v^2}{rg}, we can solve for v.
v = \sqrt{rg \tan \theta}
For this problem, we are given the following values:
radius of curvature, r=100\ \text{m}
acceleration due to gravity, g=9.81\ \text{m/s}^2
banking angle, \theta = 20.0 ^\circ
If we substitute the given values into our formula, we have
A rotating space station is said to create “artificial gravity”—a loosely-defined term used for an acceleration that would be crudely similar to gravity. The outer wall of the rotating space station would become a floor for the astronauts, and centripetal acceleration supplied by the floor would allow astronauts to exercise and maintain muscle and bone strength more naturally than in non-rotating space environments. If the space station is 200 m in diameter, what angular velocity would produce an “artificial gravity” of 9.80 m/s2 at the rim?
Centripetal acceleration is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. The formula for centripetal acceleration is
a_{c} = r \omega ^2
If we solve for the angular velocity in terms of the other quantities, we have
Verify that the linear speed of an ultracentrifuge is about 0.50 km/s, and Earth in its orbit is about 30 km/s by calculating:
(a) The linear speed of a point on an ultracentrifuge 0.100 m from its center, rotating at 50,000 rev/min.
(b) The linear speed of Earth in its orbit about the Sun (use data from the text on the radius of Earth’s orbit and approximate it as being circular).
Solution:
Part A
We are given a linear speed of an ultracentrifuge of 0.50\ \text{km/s}. We are asked to verify this value if we are given a radius of r=0.100\ \text{m} and angular velocity of \omega = 50000 \ \text{rev/min}. We are going to use the formula
v = r \omega
Since we are given a linear speed in \text{km/s}, we are going to convert the radius to \text{km}, and the angular velocity to \text{rad/sec}
Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid rates and experience large centripetal accelerations, especially at the tip.
(a) Calculate the magnitude of the centripetal acceleration at the tip of a 4.00 m long helicopter blade that rotates at 300 rev/min.
(b) Compare the linear speed of the tip with the speed of sound (taken to be 340 m/s).
Solution:
Part A
We are given the following values: r=4.00\ \text{m}, and \omega = 300 \ \text{rev/min}.
Let us convert the angular velocity to unit of radians per second.
The propeller of a World War II fighter plane is 2.30 m in diameter.
(a) What is its angular velocity in radians per second if it spins at 1200 rev/min?
(b) What is the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac?
(c) What is the centripetal acceleration of the propeller tip under these conditions? Calculate it in meters per second squared and convert to multiples of g.
Solution:
Part A
We are converting the angular velocity \omega = 1200\ \text{rev/min} into radians per second.
We are now solving the linear speed of the tip of the propeller by relating the angular velocity to linear velocity using the formula v = r \omega . The radius is half the diameter, so r= \frac{2.30\ \text{m}}{2} = 1.15 \ \text{m} .
\begin{align*}
v & = r \omega \\ \\
v & = \left( 1.15 \ \text{m} \right)\left( 125.6637 \ \text{radians/sec} \right) \\ \\
v & = 144.5132 \ \text{m/s} \\ \\
v & = 145 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}
Part C
From the computed linear speed and the given radius of the propeller, we can now compute for the centripetal acceleration a_{c} using the formula
Taking the age of Earth to be about 4×109 years and assuming its orbital radius of 1.5 ×1011 m has not changed and is circular, calculate the approximate total distance Earth has traveled since its birth (in a frame of reference stationary with respect to the Sun).
Solution:
First, we need to compute for the linear velocity of the Earth using the formula below knowing that the Earth has 1 full revolution in 1 year
v=r\omega
where r=1.5\times 10^{11} \ \text{m} and \omega = 2\pi \ \text{rad/year} . Substituting these values, we have
\begin{align*}
v & = r \omega \\ \\
v & = \left( 1.5\times 10^{11} \ \text{m} \right)\left( 2 \pi \ \text{rad/year} \right) \\ \\
v & = 9.4248\times 10^{11} \ \text{m/year}
\end{align*}
Knowing the linear velocity, we can compute for the total distance using the formula
\Delta x = v \Delta t
We can now substitute the given values: v = 9.4248\times 10^{11} \ \text{m/year} and \Delta t = 4\times 10^{9} \ \text{years} .
\begin{align*}
\Delta x & = v \Delta t \\ \\
\Delta x & = \left( 9.4248\times 10^{11} \ \text{m/year} \right) \left( 4\times 10^{9} \ \text{years} \right) \\ \\
\Delta x & = 3.7699 \times 10^{21} \ \text{m} \\ \\
\Delta x & = 4 \times 10^{21} \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}
A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow has an 8.00 m radius, at how many revolutions per minute will the riders be subjected to a centripetal acceleration whose magnitude is 1.50 times that due to gravity?
Solution:
Centripetal acceleration a_{c} is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. The relationship between the centripetal acceleration a_{c} and the angular velocity \omega is given by the formula
a_{c}=r\omega^{2}
Now, taking the formula and solving for the angular velocity:
\omega = \sqrt{\frac{a_{c}}{r}}
From the given problem, we are given the following values: r=8.00\ \text{m} and a_{c}=1.50\times 9.81 \ \text{m/s}^2=14.715\ \text{m/s}^2. If we substitute these values in the formula, we can solve for the angular velocity.
Consider an amusement park ride in which participants are rotated about a vertical axis in a cylinder with vertical walls. Once the angular velocity reaches its full value, the floor drops away and friction between the walls and the riders prevents them from sliding down. Construct a problem in which you calculate the necessary angular velocity that assures the riders will not slide down the wall. Include a free body diagram of a single rider. Among the variables to consider are the radius of the cylinder and the coefficients of friction between the riders’ clothing and the wall.
A truck with 0.420-m-radius tires travels at 32.0 m/s. What is the angular velocity of the rotating tires in radians per second? What is this in rev/min?
Solution:
The linear velocity, v and the angular velocity \omega are related by the equation
v=r\omega \ \text{or} \ \omega=\frac{v}{r}
From the given problem, we are given the following values: r=0.420 \ \text{m} and v=32.0 \ \text{m/s}. Substituting these values into the formula, we can directly solve for the angular velocity.
In lacrosse, a ball is thrown from a net on the end of a stick by rotating the stick and forearm about the elbow. If the angular velocity of the ball about the elbow joint is 30.0 rad/s and the ball is 1.30 m from the elbow joint, what is the velocity of the ball?
Solution:
The linear velocity, v and the angular velocity, \omega of a rotating object are related by the equation
v=r\omega
From the given problem, we have the following values: \omega=30.0 \ \text{rad/s} and r=1.30 \ \text{m} . Substituting these values in the formula, we can directly solve for the linear velocity.
You must be logged in to post a comment.