Tag Archives: Angular Velocity

College Physics by Openstax Chapter 6 Problem 26

The Ideal Speed on a Banked Curve


Problem:

What is the ideal speed to take a 100 m radius curve banked at a 20.0° angle?


Solution:

The formula for the ideal speed on a banked curve can be derived from the formula of the ideal angle. That is, starting from tanθ=v2rg\tan \theta = \frac{v^2}{rg}, we can solve for vv.

v=rgtanθv = \sqrt{rg \tan \theta}

For this problem, we are given the following values:

  • radius of curvature, r=100 mr=100\ \text{m}
  • acceleration due to gravity, g=9.81 m/s2g=9.81\ \text{m/s}^2
  • banking angle, θ=20.0\theta = 20.0 ^\circ

If we substitute the given values into our formula, we have

v=rgtanθv=(100 m)(9.81 m/s2)(tan20.0)v=18.8959 m/sv=18.9 m/s  (Answer)\begin{align*} v = & \sqrt{rg \tan \theta} \\ \\ v = & \sqrt{\left( 100\ \text{m} \right)\left( 9.81\ \text{m/s}^2 \right) \left( \tan 20.0 ^\circ \right) } \\ \\ v = & 18.8959\ \text{m/s} \\ \\ v = & 18.9\ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The ideal speed for the given banked curve is about 18.9 m/s18.9\ \text{m/s}.


Advertisements
Advertisements

Problem 6-19: The angular velocity of an “artificial gravity”


A rotating space station is said to create “artificial gravity”—a loosely-defined term used for an acceleration that would be crudely similar to gravity. The outer wall of the rotating space station would become a floor for the astronauts, and centripetal acceleration supplied by the floor would allow astronauts to exercise and maintain muscle and bone strength more naturally than in non-rotating space environments. If the space station is 200 m in diameter, what angular velocity would produce an “artificial gravity” of 9.80 m/s2 at the rim?


Solution:

We are given the following quantities:

radius=diameter2=200 m2=100 m\text{radius} = \frac{\text{diameter}}{2} = \frac{200\ \text{m}}{2} = 100 \ \text{m}
centripetal acceleration,ac=9.80 m/s2\text{centripetal acceleration}, a_c = 9.80 \ \text{m/s}^2

Centripetal acceleration is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. The formula for centripetal acceleration is

ac=rω2a_{c} = r \omega ^2

If we solve for the angular velocity in terms of the other quantities, we have

ω=acr\omega = \sqrt{\frac{a_c}{r}}

Substituting the given quantities,

ω=acrω=9.80 m/s2100 mω=0.313 rad/sec  (Answer)\begin{align*} \omega & = \sqrt{\frac{a_c}{r}} \\ \\ \omega & = \sqrt{\frac{9.80 \ \text{m/s}^2}{100\ \text{m}}} \\ \\ \omega & = 0.313 \ \text{rad/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-18: The linear speed of an ultracentrifuge and Earth in its orbit


Verify that the linear speed of an ultracentrifuge is about 0.50 km/s, and Earth in its orbit is about 30 km/s by calculating:

(a) The linear speed of a point on an ultracentrifuge 0.100 m from its center, rotating at 50,000 rev/min.

(b) The linear speed of Earth in its orbit about the Sun (use data from the text on the radius of Earth’s orbit and approximate it as being circular).


Solution:

Part A

We are given a linear speed of an ultracentrifuge of 0.50 km/s0.50\ \text{km/s}. We are asked to verify this value if we are given a radius of r=0.100 mr=0.100\ \text{m} and angular velocity of ω=50000 rev/min \omega = 50000 \ \text{rev/min}. We are going to use the formula

v=rωv = r \omega

Since we are given a linear speed in km/s\text{km/s}, we are going to convert the radius to km\text{km}, and the angular velocity to rad/sec\text{rad/sec}

r=0.100 m×1 km1000 m=0.0001 kmr=0.100\ \text{m} \times \frac{1\ \text{km}}{1000\ \text{m}} = 0.0001\ \text{km}
ω=50000 rev/min×2π rad1 rev×1 min60 sec=5235.9878 rad/sec\omega = 50000 \ \text{rev/min} \times \frac{2\pi \ \text{rad}}{1\ \text{rev}} \times \frac{1\ \text{min}}{60\ \text{sec}} =5235.9878\ \text{rad/sec}

Now, we can substitute these into the formula

v=rωv=(0.0001 km)(5235.9878 rad/sec)v=0.5236 km/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 0.0001 \ \text{km} \right)\left( 5235.9878 \ \text{rad/sec} \right) \\ \\ v & = 0.5236 \ \text{km/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

This value is about 0.500 km/s.

Part B

From Table 6.2 of the book

ParentSatelliteAverage orbital radius r(km)Period T(y)r3 / T2 (km3 / y2)
SunEarth1.496×1081.496 \times 10^{8} 13.35×10243.35 \times 10^{24}

Using the same formulas we used in Part A, we can solve for the linear velocity of the Earth around the sun. The radius is

r=1.496×108 kmr=1.496 \times10^{8} \ \text{km}

The angular velocity is

ω=1 revyear×2π rad1 rev×1 year365.25 days×1 day24 hours×1 hour3600 secω=1.9910×107 rad/sec\begin{align*} \omega & = 1 \ \frac{\text{rev}}{\text{year}} \times \frac{2\pi \ \text{rad}}{1\ \text{rev}} \times \frac{1 \ \text{year}}{365.25 \ \text{days}} \times \frac{1\ \text{day}}{24\ \text{hours}}\times \frac{1\ \text{hour}}{3600\ \text{sec}} \\ \\ \omega & = 1.9910 \times 10^{-7}\ \text{rad/sec} \end{align*}

The linear velocity is

v=rωv=(1.496×108 km)(1.9910×107) rad/secv=29.7854 km/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 1.496\times 10^{8}\ \text{km} \right)\left( 1.9910 \times 10 ^ {-7} \right) \ \text{rad/sec}\\ \\ v & = 29.7854\ \text{km/s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The linear velocity is about 30 km/s.


Advertisements
Advertisements

Problem 6-15: The centripetal acceleration at the tip of a helicopter blade


Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid rates and experience large centripetal accelerations, especially at the tip.

(a) Calculate the magnitude of the centripetal acceleration at the tip of a 4.00 m long helicopter blade that rotates at 300 rev/min.

(b) Compare the linear speed of the tip with the speed of sound (taken to be 340 m/s).


Solution:

Part A

We are given the following values: r=4.00 mr=4.00\ \text{m}, and ω=300 rev/min\omega = 300 \ \text{rev/min}.

Let us convert the angular velocity to unit of radians per second.

ω=300 revmin×2π rad1 rev×1 min60 sec=31.4159 rad/sec\omega = 300 \ \frac{\text{rev}}{\text{min}} \times \frac{2\pi \ \text{rad}}{1 \ \text{rev}}\times \frac{1\ \text{min}}{60 \ \text{sec}} = 31.4159 \ \text{rad/sec}

The centripetal acceleration at the tip of the helicopter blade can be computed using the formula

ac=rω2a_{c} = r \omega ^2

If we substitute the given values into the formula, we have

ac=rω2ac=(4.00 m)(31.4159 rad/sec)2ac=3947.8351 m/s2ac=3.95×103 m/s2  (Answer)\begin{align*} a_{c} & = r \omega^2 \\ \\ a_{c} & = \left( 4.00\ \text{m} \right)\left( 31.4159 \ \text{rad/sec} \right)^2 \\ \\ a_{c} & = 3947.8351 \ \text{m/s}^2 \\ \\ a_{c} & = 3.95 \times10^3 \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are asked to solve for the linear velocity of the blade’s tip. We are going to use the formula

v=rωv=r \omega

We just needed to substitute the given values into the formula.

v=rωv=(4.00 m)(31.4159 rad/sec)v=125.6636 m/sv=126 m/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 4.00 \ \text{m} \right)\left( 31.4159 \ \text{rad/sec} \right) \\ \\ v & = 125.6636 \ \text{m/s} \\ \\ v & = 126 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Let us compare this with the speed of light which is 340 m/s.

125.6636 m/s340 m/s×100%=36.9599%=37.0%\frac{125.6636 \ \text{m/s}}{340\ \text{m/s}} \times 100 \%= 36.9599 \% =37.0\%

The linear velocity of the blades tip is 37.0% of the speed of light.


Advertisements
Advertisements

Problem 6-13: The motion of the WWII fighter plane propeller


The propeller of a World War II fighter plane is 2.30 m in diameter.

(a) What is its angular velocity in radians per second if it spins at 1200 rev/min?

(b) What is the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac?

(c) What is the centripetal acceleration of the propeller tip under these conditions? Calculate it in meters per second squared and convert to multiples of g.


Solution:

Part A

We are converting the angular velocity ω=1200 rev/min\omega = 1200\ \text{rev/min} into radians per second.

ω=1200 revmin×2π radian1 rev×1 min60 secω=125.6637 radians/secω=126 radians/sec  (Answer)\begin{align*} \omega = & \frac{1200\ \text{rev}}{\text{min}}\times \frac{2\pi \ \text{radian}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60 \ \text{sec}} \\ \\ \omega = & 125.6637 \ \text{radians/sec} \\ \\ \omega = & 126 \ \text{radians/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are now solving the linear speed of the tip of the propeller by relating the angular velocity to linear velocity using the formula v=rωv = r \omega . The radius is half the diameter, so r=2.30 m2=1.15 mr= \frac{2.30\ \text{m}}{2} = 1.15 \ \text{m} .

v=rωv=(1.15 m)(125.6637 radians/sec)v=144.5132 m/sv=145 m/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 1.15 \ \text{m} \right)\left( 125.6637 \ \text{radians/sec} \right) \\ \\ v & = 144.5132 \ \text{m/s} \\ \\ v & = 145 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part C

From the computed linear speed and the given radius of the propeller, we can now compute for the centripetal acceleration ac a_{c} using the formula

ac=v2ra_{c} = \frac{v^2}{r}

If we substitute the given values, we have

ac=v2rac=(144.5132 m/s)21.15 mac=18160.0565 m/s2ac=1.82×104 m/s2  (Answer)\begin{align*} a_{c} & = \frac{v^2}{r} \\ \\ a_{c} & = \frac{\left( 144.5132 \ \text{m/s} \right)^2}{1.15 \ \text{m}} \\ \\ a_{c} & = 18160.0565 \ \text{m/s}^2 \\ \\ a_{c} & = 1.82\times 10^{4} \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

We can convert this value in multiples of gg

ac=18160.0565 m/s2×g9.81 m/s2ac=1851.1780gac=1.85×103 g  (Answer)\begin{align*} a_{c} & = 18160.0565 \ \text{m/s}^2 \times \frac{g}{9.81 \ \text{m/s}^2} \\ \\ a_{c} & = 1851.1780 g \\ \\ a_{c} & = 1.85\times 10^{3} \ g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-12: The approximate total distance traveled by planet Earth since its birth


Taking the age of Earth to be about 4×109 years and assuming its orbital radius of 1.5 ×1011 m has not changed and is circular, calculate the approximate total distance Earth has traveled since its birth (in a frame of reference stationary with respect to the Sun).


Solution:

First, we need to compute for the linear velocity of the Earth using the formula below knowing that the Earth has 1 full revolution in 1 year

v=rωv=r\omega

where r=1.5×1011 mr=1.5\times 10^{11} \ \text{m} and ω=2π rad/year\omega = 2\pi \ \text{rad/year} . Substituting these values, we have

v=rωv=(1.5×1011 m)(2π rad/year)v=9.4248×1011 m/year\begin{align*} v & = r \omega \\ \\ v & = \left( 1.5\times 10^{11} \ \text{m} \right)\left( 2 \pi \ \text{rad/year} \right) \\ \\ v & = 9.4248\times 10^{11} \ \text{m/year} \end{align*}

Knowing the linear velocity, we can compute for the total distance using the formula

Δx=vΔt\Delta x = v \Delta t

We can now substitute the given values: v=9.4248×1011 m/yearv = 9.4248\times 10^{11} \ \text{m/year} and Δt=4×109 years\Delta t = 4\times 10^{9} \ \text{years} .

Δx=vΔtΔx=(9.4248×1011 m/year)(4×109 years)Δx=3.7699×1021 mΔx=4×1021 m  (Answer)\begin{align*} \Delta x & = v \Delta t \\ \\ \Delta x & = \left( 9.4248\times 10^{11} \ \text{m/year} \right) \left( 4\times 10^{9} \ \text{years} \right) \\ \\ \Delta x & = 3.7699 \times 10^{21} \ \text{m} \\ \\ \Delta x & = 4 \times 10^{21} \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-10: The angular velocity of a person in a circular fairground ride


A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow has an 8.00 m radius, at how many revolutions per minute will the riders be subjected to a centripetal acceleration whose magnitude is 1.50 times that due to gravity?


Solution:

Centripetal acceleration aca_{c} is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. The relationship between the centripetal acceleration aca_{c} and the angular velocity ω\omega is given by the formula

ac=rω2a_{c}=r\omega^{2}

Now, taking the formula and solving for the angular velocity:

ω=acr\omega = \sqrt{\frac{a_{c}}{r}}

From the given problem, we are given the following values: r=8.00 mr=8.00\ \text{m} and ac=1.50×9.81 m/s2=14.715 m/s2a_{c}=1.50\times 9.81 \ \text{m/s}^2=14.715\ \text{m/s}^2. If we substitute these values in the formula, we can solve for the angular velocity.

ω=acrω=14.715 m/s28.00 mω=1.3561 rad/sec\begin{align*} \omega & = \sqrt{\frac{a_{c}}{r}} \\ \\ \omega & = \sqrt{\frac{14.715\ \text{m/s}^2}{8.00\ \text{m}}} \\ \\ \omega & = 1.3561\ \text{rad/sec} \\ \\ \end{align*}

Then, we can convert this value into its corresponding value at the unit of revolutions per minute.

ω=1.3561 radsec×60 sec1 min×1 rev2π radω=12.9498 rev/minω=13.0 rev/min  (Answer)\begin{align*} \omega & = 1.3561\ \frac{\text{rad}}{\text{sec}} \times \frac{60\ \text{sec}}{1\ \text{min}}\times \frac{1\ \text{rev}}{2\pi \ \text{rad}} \\ \\ \omega & = 12.9498\ \text{rev/min} \\ \\ \omega & = 13.0 \ \text{rev/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-9: A construct your own problem on College Physics involving angular motion


Construct Your Own Problem

Consider an amusement park ride in which participants are rotated about a vertical axis in a cylinder with vertical walls. Once the angular velocity reaches its full value, the floor drops away and friction between the walls and the riders prevents them from sliding down. Construct a problem in which you calculate the necessary angular velocity that assures the riders will not slide down the wall. Include a free body diagram of a single rider. Among the variables to consider are the radius of the cylinder and the coefficients of friction between the riders’ clothing and the wall.


Problem 6-7: Calculating the angular velocity of a truck’s rotating tires


A truck with 0.420-m-radius tires travels at 32.0 m/s. What is the angular velocity of the rotating tires in radians per second? What is this in rev/min?


Solution:

The linear velocity, vv and the angular velocity ω\omega are related by the equation

v=rω or ω=vrv=r\omega \ \text{or} \ \omega=\frac{v}{r}

From the given problem, we are given the following values: r=0.420 mr=0.420 \ \text{m} and v=32.0 m/sv=32.0 \ \text{m/s}. Substituting these values into the formula, we can directly solve for the angular velocity.

ω=vrω=32.0 m/s0.420 mω=76.1905 rad/sω=76.2 rad/s  (Answer)\begin{align*} \omega & = \frac{v}{r} \\ \\ \omega & = \frac{32.0 \ \text{m/s}}{0.420 \ \text{m}} \\ \\ \omega & = 76.1905 \ \text{rad/s} \\ \\ \omega & = 76.2 \ \text{rad/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Then, we can convert this into units of revolutions per minute:

ω=76.1905 radsec×1 rev2π rad×60 sec1 minω=727.5657 rev/minω=728 rev/min  (Answer)\begin{align*} \omega & = 76.1905 \ \frac{\bcancel{\text{rad}}}{\bcancel{\text{sec}}}\times \frac{1 \ \text{rev}}{2\pi\ \bcancel{\text{rad}}}\times \frac{60\ \bcancel{\text{sec}}}{1\ \text{min}} \\ \\ \omega & = 727.5657\ \text{rev/min} \\ \\ \omega & = 728\ \text{rev/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-6: Calculating the linear velocity of the lacrosse ball with the given angular velocity


In lacrosse, a ball is thrown from a net on the end of a stick by rotating the stick and forearm about the elbow. If the angular velocity of the ball about the elbow joint is 30.0 rad/s and the ball is 1.30 m from the elbow joint, what is the velocity of the ball?


Solution:

The linear velocity, vv and the angular velocity, ω\omega of a rotating object are related by the equation

v=rωv=r\omega

From the given problem, we have the following values: ω=30.0 rad/s\omega=30.0 \ \text{rad/s} and r=1.30 mr=1.30 \ \text{m} . Substituting these values in the formula, we can directly solve for the linear velocity.

v=rωv=(1.30 m)(30.0 rad/s)v=39.0 m/s  (Answer)\begin{align*} v & =r\omega \\ \\ v & = \left( 1.30 \ \text{m} \right)\left( 30.0 \ \text{rad/s} \right) \\ \\ v & = 39.0 \ \text{m/s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements