Tag Archives: Applications of Ordinary First-Ordered Differential Equations

Elementary Differential Equations by Dela Fuente, Feliciano and Uy Physical Application 2: Exponential Growth and Decay


A certain radioactive material follows the law of exponential change and has a half life of 38 hours. Find how long it takes for 90% of the radioactivity to be dissipated.


Solution:

Use the formula:

S=CektS=Ce^{-kt}

First, find the constant of proportionality. In the problem, after 38 hours, half of the radioactivity has been dissipated and a half has been retained. So we can assume that S = 0.5So when t = 38 hrs and C = So.

(0.5)So=(So)ek(38)\left(0.5\right)So=\left(So\right)e^{-k\left(38\right)}

And then solve for k:

k=0.018241k=-0.018241

And then substitute k to the formula:

S=Ce0.018241(t)S=Ce^{-0.018241\left(t\right)}

Now we can solve for the time(t). According to the problem, 90% of the radioactivity is dissipated, so 10% is retained. So we can assume that S = 0.1So and change C = So.

(0.1)So=(So)e0.018241(t)\left(0.1\right)So=\left(So\right)e^{-0.018241\left(t\right)}

And then solve for time(t):

t=126.23hrst\:=\:126.23\:hrs

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano and Uy Chapter 10 Problem 3 — Applications of Ordinary First-Ordered Differential Equations


A tank contains 400 liters of brine. Twelve liters of brine, each containing 2.5 N of dissolved salt, enter the tank per minute, and the mixture, assumed uniform leaves at the rate of 8 liters per min. If the concentration is to be 2 N/litre at the end of one hour, how many newtons of salt should there be present in the tank originally?


Solution:

Consider the following illustration

dSdt=(dSdt)en(dSdt)es\frac{dS}{dt}=\left(\frac{dS}{dt}\right)_{en}-\left(\frac{dS}{dt}\right)_{es}

Using,

Vbrine+(rateofbrineout)tdSdt=8LM(S400+4t)=8S(400+4t)dSdt=2S(100+t)V_{brine}+\left(rate\:of\:brine\:out\right)t\\\frac{dS}{dt}=\frac{8L}{M}\left(\frac{S}{400+4t}\right)\\=\frac{8S}{\left(400+4t\right)}\\\frac{dS}{dt}=\frac{2S}{\left(100+t\right)}

Using the general solution:

dSdt=302S(100+t)dSdt+2S(100+t)=30\frac{dS}{dt}=30-\frac{2S}{\left(100+t\right)}\\\frac{dS}{dt}+\frac{2S}{\left(100+t\right)}=30

To solve we will use First Order Linear Differential Equation (FOLDE) where:

P(t)=2(100+t),Q(t)=30P_{\left(t\right)}=\frac{2}{\left(100+t\right)}\:,\:Q_{\left(t\right)}=30

Solve for the integrating factor using the formula:

σ=eP(t)dt\sigma =e^{\int \:P_{\left(t\right)}dt}

Apply,

σ=e2100+tdtσ=e2ln(100+t)σ=eln(100+t)2σ=(100+t)2\sigma =e^{\int \:\frac{2}{100+t}dt}\\\sigma =e^{2ln\left(100+t\right)}\\\sigma \:=e^{ln\left(100+t\right)^2}\\\sigma \:=\left(100+t\right)^2

Substitute the given value to the formula:

Sσ=σQ(t)dt+CS\sigma =\int \:\sigma Q\left(t\right)dt+C

Apply,

S(100+t)2=(100+t)230dt+CS(100+t)2=30(100+t)2dt+CS(100+t)2=30(100+t)33dt+CS(100+t)2=10(100+t)3+Ceqn.1S\left(100+t\right)^2=\int \:\left(100+t\right)^230dt+C\\S\left(100+t\right)^2=30\int \:\left(100+t\right)^2dt+C\\S\left(100+t\right)^2=30\:\frac{\left(100+t\right)^{^3}}{3}dt+C\\S\left(100+t\right)^2=10\left(100+t\right)^{^3}+C\rightarrow eqn.1

Evaluate C; @t=1hr

Convert 1hr to minutes, where 1hr is simply 60 minutes.

S(100+60)2=10(100+60)3C=2NL;C=S(400+4t)S\left(100+60\right)\:2\:=10\left(100+60\right)\:^3\\C=\frac{2N}{L}\:;\:C=\frac{S}{\left(400+4t\right)}

Get the value of S using the equation:

C=S(400+4t)\:C=\frac{S}{\left(400+4t\right)}

Isolate S,

S=C(400+4t);C=2,t=60S=2(400+4(60))S=1280NS=C\left(400+4t\right);\:C=2,\:t=60\\S=2\left(400+4\left(60\right)\right)\\S=1280N

Get the value of C using Eqn.1

S(100+t)2=10(100+t)3+C;S=1280,t=601280(100+60)2=10(100+60)3+C32768000=40960000+C3276800040960000=CC=8192000S\left(100+t\right)^2=10\left(100+t\right)^{^3}+C; S=1280 , t=60\\ 1280\left(100+60\right)^2=10\left(100+60\right)^{^3}+C\\32768000=40960000+C\\32768000-40960000=C\\ C=-8192000

With the presence of the value of C we will now have our working equation:

S(100+t)2=10(100+t)38192000S\left(100+t\right)^2=10\left(100+t\right)^{^3}-8192000

Using the given working equation, solve for the value of S @ t=0

S(100+t)2=10(100+t)38192000;t=0S(100+0)2=10(100+0)38192000S(1000)21000=18080001000S=180.8NS\left(100+t\right)^2=10\left(100+t\right)^{^3}-8192000; t=0\\S\left(100+0\right)^2=10\left(100+0\right)^{^3}-8192000\\\frac{S\left(1000\right)^2}{1000}=\frac{1808000}{1000}\\S=180.8 N

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 10 Problem 12 — Applications of Ordinary First-Ordered Differential Equations


A bacterial population follows the law of exponential growth. If between noon and 2 p.m. the population triples, at what time should the population become 100 times what it was at noon? At 10 a.m. what percentage was present?


SOLUTION:

First, we denote

P as the population of bacteria at anytime

Po as the original bacterial population

t = 0 (12 noon)

t = 2 (2 p.m.)

Let us determine the given and the required

GIVEN:

@12nn to 2p.m.; P= 3Po

REQUIRED:

  1. what time should the population become 100 times
  2. at noon
  3. percentage at 10 a.m.

Using the formula of Applications of Ordinary First-Ordered Differential Equations under Exponential Growth or Decay

dPdt=kPdPP=kdtelnP=ekt+CP=Cekt     (Eq.1)@t=0;P=PoPo=CektPo=Cek(0)Po=C\frac{dP}{dt}=kP \\ \int \:\frac{dP}{P}=\int \:kdt\\ e^{ln\:P}\:=\:e^{kt\:+\:C}\\ P=\:Ce^{kt}\:\:\:\:\:(Eq.1)\\ @t=0; P=P_o\\ P_o=Ce^{kt}\\ P_o=Ce^{k\left(0\right)}\\ P_o = C

Substituting to Eq.1., we get

P=Poekt       (Eq.2)P=\:P_{o\:}e^{kt}\:\:\:\:\:\:\:(Eq.2)

Then from the given condition, from 12 noon to 2 p.m., the population triples (using Eq.2), we will solve for the value of k

@t=2;P=3PoP=Poekt3Po=Poek(2)k=0.54931@t= 2\:;\:P= 3P_o\\ P=\:P_{o\:}e^{kt}\\ 3P_{o\:}=\:P_{o\:}e^{k\left(2\right)}\\ k=0.54931

We will then come up with the working equation (WE), this will help us solve the required problems

P=Poe(0.54931)tP_{\:}=\:P_{o\:}e^{\left(0.54931\right)t}

1.) what time should the population become 100 times

Using WE,

t=?  ;  P=100PoP=Poe(0.54931)t100Po=Poe(0.54931)tt=8.38hrs.t=8:22:48p.m.  or8:23p.m.t=?\:\:;\:\:P=100P_o\\ P_{\:}=\:P_{o\:}e^{\left(0.54931\right)t}\\ 100P_{o\:}=\:P_{o\:}e^{\left(0.54931\right)t}\\ t=8.38\: hrs.\\ t= 8:22:48\: p.m. \; or\:8:23\:p.m.

2.) at noon

P=PoP=P_o

3.) percentage at 10 a.m.

@10a.m.  ;  t=2P=Poe(0.549)(2)P=Po(0.33333)%=PPo(100)=Po(0.33333)Po(100)%=33.33%@10 a.m.\:\:;\:\:t=-2\\ P_{\:}=\:P_{o\:}e^{\left(0.549\right)\left(-2\right)}\\ P_{\:}=\:P_{o\:}\left(0.33333\right)\\ \%=\frac{P}{P_o}{(100)}=\frac{P_o\left(0.33333\right)}{P_o}{(100)}\\ \%=\:33.33\%

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 10 Problem 2 — Applications of Ordinary First-Ordered Differential Equations


Find the equation of the curve so drawn that every point on it is equidistant from the origin and the intersection of the x-axis with the normal to the curve at the point.


Solution:

Plot points on the curve,

A(x1,y1)A(x_{1},y_{1})

We all know that a Slope of a Tangent corresponds to m, and its negative reciprocal is equal to the Slope of a Normal. Thus, we use Point-Slope Formula.

yy1=1m(xx1)y-y_{1}=-\frac{1}{m}\left(x-x_{1}\right)

As the normal intersects the x-axis, y = 0

Substituting to the previous equation, we get

y1=1m(xx1)my1=1(xx1)my1=x+x1x=x1+my1\begin{align*} -y_{1}&=-\frac{1}{m}\left(x-x_{1}\right)\\ -my_{1}&=-1\left(x-x_{1}\right)\\ -my_{1}&=-x+x_{1}\\ x&=x_{1}+my_{1} \end{align*}

By using distance formula, from the origin (0,0), to point (x1+y1) = from intersection to (x1+y1)

(x10)2+(y10)2=(x1+my1x1)2+(0y1)2x12+y12=m2y12+y12x12+y12=m2y12+y12x12=m2y12x1=m1y1    ;m=dydxx1=dydxy1\begin{align*} \sqrt{\left(x_{1}-0\right)^2+\left(y_{1}-0\right)^2}&=\sqrt{\left(x_{1}+my_{1}-x_{1}\right)^2+\left(0-y_{1}\right)^2}\\ \sqrt{x_{1}^2+y_{1}^2}&=\sqrt{m^2y_{1}^2+y_{1}^2}\\ x_{1}^2+y_{1}^2&=m^2y_{1}^2+y_{1}^2\\ x_{1}^2&=m^2y_{1}^2\\ x_{1}&=m_{1}y_{1}\:\:\:\:;m=\frac{dy}{dx}\\ x_{1}&=\frac{dy}{dx}y_{1} \end{align*}

Change x1 and y1 to x and y,

x=ydydxxdx=ydy\begin{align*} x&=y\frac{dy}{dx}\\ xdx&=ydy \end{align*}

By integrating,

ydx=xdyy22=x22+Cy2=x2+2C\begin{align*} \int \:ydx&=\int \:xdy\\ \frac{y^2}{2}&=\frac{x^2}{2}+C\\ y^2&={x^2}+2C\\ \end{align*}

We get,

y2x2=2Cy^2-x^2-=2C

Advertisements
Advertisements