Mathematics Algebra Trigonometry Geometry Precalculus Calculus I Calculus II Calculus III Advanced Engineering Mathematics Probability and Statistics Advertisements Advertisements
Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 2 Advertisements Advertisements PROBLEM: If y=x2+3x\displaystyle y=\frac{x^2+3}{x}y=xx2+3, find xxx as a function of yyy. Advertisements Advertisements SOLUTION: y=x2+3xxy=x2+3x2−xy+3=0\begin{align*} y & = \frac{x^2+3}{x} \\ xy & =x^2+3 \\ x^2-xy+3&=0 \end{align*}yxyx2−xy+3=xx2+3=x2+3=0 Solve for xxx using the quadratic formula. We have a=1, b=−y, and c=3 a=1,\:b=-y,\:\text{and}\:c=3a=1,b=−y,andc=3 x=−b±b2−4ac 2ax=−(−y)±(−y)2−4(1)(3)2(1)x=y±y2−122 (Answer)\begin{align*} x & =\frac{-b\pm \sqrt{b^2-4ac}\:}{2a} \\ x & =\frac{ -\left(-y\right)\pm \sqrt{\left(-y\right)^2-4\left(1\right)\left(3\right)}}{2\left(1\right)} \\ x & =\frac{y\pm \sqrt{y^2-12}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}xxx=2a−b±b2−4ac=2(1)−(−y)±(−y)2−4(1)(3)=2y±y2−12 (Answer) Advertisements Advertisements
You must be logged in to post a comment.