Tag Archives: coefficient of friction

College Physics by Openstax Chapter 6 Problem 30

The Ideal Speed and the Minimum Coefficient of Friction in Icy Mountain Roads


Problem:

If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads).

(a) Calculate the ideal speed to take a 100 m radius curve banked at 15.0º.

(b) What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 20.0 km/h?


Solution:

Part A

The formula for an ideally banked curve is

tanθ=v2rg\tan \theta = \frac{v^2}{rg}

Solving for vv in terms of all the other variables, we have

v=rgtanθv= \sqrt{rg \tan \theta}

For this problem, we are given

  • radius, r=100 mr=100\ \text{m}
  • acceleration due to gravity, g=9.81 m/s2g=9.81\ \text{m/s}^2
  • banking angle, θ=15.0\theta = 15.0^\circ

Substituting all these values in the formula, we have

v=rgtanθv=(100 m)(9.81 m/s2)tan15.0v=16.2129 m/sv=16.2 m/s  (Answer)\begin{align*} v & = \sqrt{rg \tan \theta} \\ v & = \sqrt{\left( 100\ \text{m} \right)\left( 9.81\ \text{m/s}^2 \right)\tan 15.0^\circ }\\ v & = 16.2129\ \text{m/s} \\ v & = 16.2\ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

Let us draw the free-body diagram of the car.

Summing forces in the vertical direction, we have

Ncosθ+fsinθw=0Equation 1N \cos \theta + f \sin \theta -w= 0 \quad \quad \quad \color{Blue} \text{Equation 1}

Summing forces in the horizontal directions taking to the left as the positive since the centripetal force is directed this way, we have

Nsinθfcosθ=FcEquation 2N \sin \theta - f \cos \theta = F_c \quad \quad \quad \color{Blue} \text{Equation 2}

We are given the following quantities:

  • radius of curvature, r=100 metersr=100\ \text{meters}
  • banking angle, θ=15.0\theta = 15.0^\circ
  • velocity, v=20 km/h=5.5556 m/sv=20\ \text{km/h} = 5.5556\ \text{m/s}
  • We also know that the friction, f=μsNf=\mu_{s} N and weight, w=mgw=mg

We now use equation 1 to solve for N in terms of the other variables.

Ncosθ+fsinθw=0Ncosθ+μsNsinθ=mgN(cosθ+μssinθ)=mgN=mgcosθ+μssinθ  (Equation 3)\begin{align*} N \cos \theta + f \sin \theta -w & = 0 \\ N \cos \theta +\mu_s N\sin \theta & = mg \\ N \left( \cos \theta + \mu_s \sin\theta \right) & =mg \\ N & = \frac{mg}{\cos \theta + \mu_s \sin\theta} \ \qquad \ \color{Blue} \left( \text{Equation 3} \right) \end{align*}

We also solve for N in equation 2.

NsinθμsNcosθ=mv2rN(sinθμscosθ)=mv2rN=mv2r(sinθμscosθ)  (Equation 4)\begin{align*} N \sin \theta - \mu_s N \cos \theta & = m \frac{v^2}{r} \\ N \left( \sin \theta-\mu_s \cos \theta \right) & = m \frac{v^2}{r} \\ N & = \frac{mv^2}{r \left( \sin \theta-\mu_s \cos \theta \right)} \ \qquad \ \color{Blue} \left( \text{Equation 4} \right) \end{align*}

Now, we have two equations of NN. We now equate these two equations.

mgcosθ+μssinθ=mv2r(sinθμscosθ)\frac{mg}{\cos \theta + \mu_s \sin\theta} = \frac{mv^2}{r \left( \sin \theta-\mu_s \cos \theta \right)}

We can now use this equation to solve for μs\mu_s.

mgcosθ+μssinθ=mv2r(sinθμscosθ)rg(sinθμscosθ)=v2(cosθ+μssinθ)rgsinθμsrgcosθ=v2cosθ+μsv2sinθμsv2sinθ+μsrgcosθ=rgsinθv2cosθμs(v2sinθ+rgcosθ)=rgsinθv2cosθμs=rgsinθv2cosθv2sinθ+rgcosθ\begin{align*} \frac{\bcancel{m}g}{\cos \theta + \mu_s \sin\theta} & = \frac{\bcancel{m}v^2}{r \left( \sin \theta-\mu_s \cos \theta \right)} \\ rg\left( \sin \theta-\mu_s \cos \theta \right) & = v^2 \left( \cos \theta + \mu_s \sin\theta \right) \\ rg \sin \theta - \mu_s rg \cos \theta & = v^2 \cos \theta +\mu_s v^2 \sin \theta \\ \mu_s v^2 \sin \theta + \mu _s rg \cos \theta & = rg \sin \theta - v^2 \cos \theta \\ \mu _s \left( v^2 \sin \theta + rg \cos \theta \right) & = rg \sin \theta - v^2 \cos \theta \\ \mu _s & = \frac{rg \sin \theta - v^2 \cos \theta}{v^2 \sin \theta + rg \cos \theta} \end{align*}

Now that we have an equation for μs\mu_s, we can substitute the given values.

μs=rgsinθv2cosθv2sinθ+rgcosθμs=100 m(9.81 m/s2)sin15.0(5.5556 m/s)2cos15.0(5.5556 m/s)2sin15.0+100 m(9.81 m/s2)cos15.0μs=0.2345  (Answer)\begin{align*} \mu _s & = \frac{rg \sin \theta - v^2 \cos \theta}{v^2 \sin \theta + rg \cos \theta} \\ \mu_s & = \frac{100\ \text{m}(9.81\ \text{m/s}^2) \sin 15.0^\circ -\left( 5.5556\ \text{m/s} \right)^2 \cos 15.0^\circ }{\left( 5.5556\ \text{m/s} \right)^2 \sin 15.0^\circ +100\ \text{m}\left( 9.81\ \text{m/s}^2 \right) \cos 15.0^\circ } \\ \mu_s & = 0.2345 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements