Tag Archives: College Physics by Openstax Solution Manual

College Physics by Openstax Chapter 3 Problem 10


Find the magnitudes of velocities vA and vB in Figure 3.55

The figure shows v_A directed 22.5° from the positive x-axis, and v_B started from the head of v_A and is directed 23.0° from the resultant. The resultant is given to be 6.72 m/s and is directed 26.5° from v_A. In total, the resultant is measured 49° from the positive x-axis.
Figure 3.55

Solution:

Basically, we are given an oblique triangle. First, we shall determine the value of the interior angle at the intersection of vA and vB. We can solve this knowing that the sum of the interior angles of a triangle is 180°.

To solve for vA and vB, we will use the sine law.

\begin{align*}
 \frac{\text{v}_{\text{A}}}{\sin 23^{\circ} } & =\frac{6.72\:\text{m/s}}{\sin 130.5^{\circ} } \\
\text{v}_{\text{A}} & =\frac{6.72\:\text{m/s}\:\sin \:23^{\circ }\:}{\sin \:130.5^{\circ }\:} \\
\text{v}_{\text{A}} & =3.45\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

\end{align*}

Using the same law to solve for the value of vB, we have

\begin{align*}
\frac{\text{v}_{\text{B}}}{\sin 26.5^{\circ} } & =\frac{6.72\:\text{m/s}}{\sin 130.5^{\circ} } \\
\text{v}_{\text{B}} & =\frac{6.72\:\text{m/s}\:\sin \:26.5^{\circ }\:\:}{\sin \:130.5^{\circ }\:} \\
\text{v}_{\text{B}} & =3.94\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 9


Show that the sum of the vectors discussed in Example 3.2 gives the result shown in Figure 3.24.

Figure 3.24

Solution:

So, we are given the two vectors shown below.

Vectors A and B

If we use the graphical method of adding vectors, we can join the two vectors using head-tail addition and come up with the following:

Figure 3.9B: Vectors A and B added graphically

The resultant is drawn from the tail of the first vectors (the origin) to the head of the last vector. The resultant is shown in red in the figure below.

Solve for the value of the angle 𝛼 by geometry.

\alpha = 66^\circ +\left( 180^\circ-112^\circ \right) = 134^\circ

Solve for the magnitude of the resultant using cosine law.

\begin{align*}
R^2 & = A^2+B^2-2AB\cos \alpha \\
R & = \sqrt{A^2+B^2-2AB\cos \alpha} \\
R & = \sqrt{\left( 27.5 \ \text{m} \right)^2+\left( 30.0 \ \text{m} \right)^2-2\left( 27.5\ \text{m} \right)\left( 30.0\ \text{m} \right) \cos 134^\circ} \\
R & =52.9380 \ \text{m} \\
R & = 52.9 \ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Solve for 𝛽 using sine law.

\begin{align*}
\frac{\sin \beta}{B} & = \frac{\sin \alpha}{R} \\
\beta & = \sin ^{-1} \left( \frac{B \sin \alpha }{R} \right) \\
\beta & = \sin ^{-1} \left( \frac{30.0\ \text{m} \sin 134^\circ}{52.9380 \ \text{m}} \right) \\
\beta & = 24.0573^\circ
\end{align*}

Finally, solve for 𝜃.

\theta = 66^\circ+24.0573^\circ = 90.1^\circ \ \qquad \ {\color{Orange} \left( \text{Answer} \right)}

The result is in conformity with that in figure 3.24 shown on the question shown above.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 8


Show that the order of addition of three vectors does not affect their sum. Show this property by choosing any three vectors A, B, and C, all having different lengths and directions. Find the sum A + B + C then find their sum when added in a different order and show the result is the same. (There are five other orders in which A, B, and C can be added; choose only one.)


Solution:

Consider the three vectors shown in the figures below:

Vector A

Vector B

Vector C

First, we shall add them A+B+C. Using the head-tail or graphical method of vector addition, we have the figure shown below.

Figure 3.8B: The resultant force of A+B+C

Now, let us try to find the sum of the three vectors by reordering vectors A, B, and C. Let us try to find the sum of C+B+A in that order. The result is shown below.

Figure 3.8C: The resultant of 3 vectors added in different order.

We can see that the resultant is the same directed from the origin upward. This proves that the resultant must be the same even if the vectors are added in different order.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 66


Figure 2.68 shows the position graph for a particle for 6 s. (a) Draw the corresponding Velocity vs. Time graph. (b) What is the acceleration between 0 s and 2 s? (c) What happens to the acceleration at exactly 2 s?

position graph for a particle for 6 s.
Figure 2.68

Solution:

Part A

The velocity of the particle is the slope of the position vs time graph. Since the position graph is composed of straight lines, we can say that the velocity is constant for several time ranges.

Time RangeSlope of the Position vs Time Graph
0 to 2 seconds=\frac{2-0}{2-0}=1\:\text{m/s}
2 to 3 seconds=\frac{-3-2}{3-2}=\frac{-5}{1}=-5\:\text{m/s}
3 to 5 seconds=0 \ \text{m/s}
5 to 6 seconds=\frac{-2-\left(-3\right)}{6-5}=\frac{1}{1}=1\:\text{m/s}

Based on the data in the table, we can draw the velocity diagram

velocity vs time graph
velocity vs time graph

Part B

Since the velocity is constant between 0 seconds and 2 seconds, we say that the acceleration is 0.

Part C

Since there is a sudden change in velocity at exactly 2 seconds in a very short amount of time, we say that the acceleration is undefined in this case.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 65


A graph of v(t) is shown for a world-class track sprinter in a 100-m race. (See Figure 2.67). (a) What is his average velocity for the first 4 s? (b) What is his instantaneous velocity at t=5 s? (c) What is his average acceleration between 0 and 4 s? (d) What is his time for the race?

A graph of  v(t)  is shown for a world-class track sprinter in a 100-m race.
Figure 2.67

Solution:

Part A

To find the average velocity over the straight line graph of the velocity vs time shown, we just need to locate the midpoint of the line. In this case, the average speed for the first 4 seconds is

v_{\text{ave}}=6\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

Looking at the graph, the velocity at exactly 5 seconds is 12 m/s.

Part C

If we are given the velocity-time graph, we can solve for the acceleration by solving for the slope of the line.

Consider the line from time zero to time, t=4 seconds. The slope, or acceleration, is

a=\text{slope}=\frac{12\:\text{m/s}-0\:\text{m/s}}{4\:\text{s}}=3\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part D

For the first 4 seconds, the distance traveled is equal to the area under the curve.

\text{distance}=\frac{1}{2}\left(4\:\sec \right)\left(12\:\text{m/s}\right)=24\:\text{m}

So, the sprinter traveled a total of 24 meters in the first 4 seconds. He still needs to travel a distance of 76 meters to cover the total racing distance. At the constant rate of 12 m/s, he can run the remaining distance by

\text{t}=\frac{\text{distance}}{\text{velocity}}=\frac{76\:\text{m}}{12\:\text{m/s}}=6.3\:\sec

Therefore, the total time of the sprint is

\text{t}_{\text{total}}=4\:\sec +6.3\:\sec =10.3\:\sec \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 49


You throw a ball straight up with an initial velocity of 15.0 m/s. It passes a tree branch on the way up at a height of 7.00 m. How much additional time will pass before the ball passes the tree branch on the way back down?


Solution:

The known values are a=-9.80\:\text{m/s}^2; v_o=15.0\:\text{m/s}; y=7.00\:\text{m}

The applicable formula is.

y=v_ot+\frac{1}{2}at^2

Using this formula, we can solve it in terms of time, t.

t=\frac{-v_0\pm \sqrt{v_0^2+2ay}}{a}

Substituting the known values, we have

\begin{align*}
t & =\frac{-v_0\pm \sqrt{v_0^2+2ay}}{a} \\
t & =\frac{-15.0\:\text{m/s}\pm \sqrt{\left(15.0\:\text{m/s}\right)^2+2\left(-9.80\:\text{m/s}^2\right)\left(7.00\:\text{m}\right)}}{-9.80\:\text{m/s}^2} \\
t&=\frac{-15.0\:\text{m/s}\pm 9.37\:\text{m/s}}{-9.80\:\text{m/s}^2}
\end{align*}

We have two values for time, t. These two values represent the times when the ball passes the tree branch.

 t_1=\frac{-15.0\:m/s+9.37\:m/s}{-9.80\:m/s^2}=0.57\:sec \\
t_2=\frac{-15.0\:m/s-9.37\:m/s}{-9.80\:m/s^2}=2.49\:sec

Therefore, the total time between passing the branch is the difference between 2.49 seconds and 0.57 seconds.

t_2-t_1=2.49  \ \text{s} - 0.57 \ \text{s}=1.92 \ \text{s}  \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Purchase College Physics Solution Manual


You can complete your purchase even if you do not have a Paypal account. Just click on the appropriate card type you have.

For concerns, please send an email to [email protected]

Buy the College Physics 2nd Edition Complete Solution Guide for only $49

College Physics by Openstax Complete Solution Manual by Engineering-Math.Org

This is a PDF copy of the complete guide to the problems and exercises of the book College Physics by Openstax. Expect the copy to be sent to your email address within 24 hours. If you have not heard from us within 24 hours, kindly send us a message to [email protected]

$49.00


Purchase Other Similar Solution Manuals

University Physics Volume I Complete Solution Guides

$49.00

University Physics Volume II Complete Solution Guides

$49.00

University Physics Volume III Complete Solution Guides

$49.00


Looking for another material? Kindly send us a message to [email protected] and we will get back to you within 24 hours.


Solution Guides to College Physics Chapter 2 Banner

Chapter 2: Kinematics

Advertisements

Displacement

Advertisements

Time, Velocity, and Speed

Advertisements

Acceleration

Advertisements

Motion Equations for Constant Acceleration in One Dimension

Advertisements

Falling Objects

Advertisements

Graphical Analysis of One-Dimensional Motion


Advertisements
Advertisements
Solution Guide to College Physics by Openstax Chapter 1 Banner

Chapter 1: Introduction: The Nature of Science and Physics

Advertisements

Physical Quantities and Units

Advertisements

Accuracy, Precision, and Significant Figures

Advertisements

Approximation


Advertisements
Advertisements
Solution Guides for College Physics by Openstax Banner

College Physics by Openstax

You can browse on the itemized questions with solutions of the College Physics by Openstax below. Also, you can buy the whole Complete Solution Manual here.


College Physics Cover of Chapter 14

Chapter 14: Heat and Heat Transfer Methods

College Physics Cover of Chapter 15

Chapter 15: Thermodynamics

College Physics Cover of Chapter 16

Chapter 16: Oscillatory Motion and Waves

College Physics Cover of Chapter 17

Chapter 17: Physics of Hearing

College Physics Cover of Chapter 18

Chapter 18:
Electric Charge and Electric Field

College Physics Cover of Chapter 19

Chapter 19:
Electric Potential and Electric Field

College Physics Cover of Chapter 20

Chapter 20:
Electric Current, Resistance, and Ohm’s Law

College Physics Cover of Chapter 21

Chapter 21: Circuits and DC Instruments

College Physics Cover of Chapter 22

Chapter 22:
Magnetism

College Physics Cover of Chapter 23

Chapter 23:
Electromagnetic Induction, AC Circuits, and Electrical Technologies

College Physics Cover of Chapter 24

Chapter 24:
Electromagnetic Waves

College Physics Cover of Chapter 25

Chapter 25: Geometric Optics

College Physics Cover of Chapter 26

Chapter 26: Vision and Optical Instrument

College Physics Cover of Chapter 27

Chapter 27: Wave Optics

College Physics Cover of Chapter 28

Chapter 28: Special Relativity

College Physics Cover of Chapter 29

Chapter 29: Introduction to Quantum Physics

College Physics Cover of Chapter 30

Chapter 30: Atomic Physics

College Physics Cover of Chapter 31

Chapter 31: Radioactivity and Nuclear Physics

College Physics Cover of Chapter 32

Chapter 32: Medical Applications of Nuclear Physics

College Physics Cover of Chapter 33

Chapter 33:
Particle Physics

College Physics Cover of Chapter 34

Chapter 34: Frontiers of Physics