College Physics 3.60 – Speed of an airplane relative to the air mass


(a) Another airplane is flying in a jet stream that is blowing at 45.0 m/s in a direction 20º south of east (as in Exercise 3.58). Its direction of motion relative to the Earth is 45.0º south of west, while its direction of travel relative to the air is 5.00º south of west. What is the airplane’s speed relative to the air mass? (b) What is the airplane’s speed relative to the Earth?


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.59 – Direction of motion to have a velocity straight north relative to the Earth


(a) In what direction would the ship in Exercise 3.57 have to travel in order to have a velocity straight north relative to the Earth, assuming its speed relative to the water remains 7.00 m/s? (b) What would its speed be relative to the Earth?


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.58 – Velocity of an airplane relative to the Earth


(a) A jet airplane flying from Darwin, Australia, has an air speed of 260 m/s in a direction 5.0º south of west. It is in the jet stream, which is blowing at 35.0 m/s in a direction 15º south of east. What is the velocity of the airplane relative to the Earth? (b) Discuss whether your answers are consistent with your expectations for the effect of the wind on the plane’s path.


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.57 – Velocity of a ship relative to the Earth


A ship sets sail from Rotterdam, The Netherlands, heading due north at 7.00 m/s relative to the water. The local ocean current is 1.50 m/s in a direction 40.0º north of east. What is the velocity of the ship relative to the Earth?


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.56 – Calculating the relative initial velocity of a projectile


A football quarterback is moving straight backward at a speed of 2.00 m/s when he throws a pass to a player 18.0 m straight downfield. The ball is thrown at an angle of 25.0º relative to the ground and is caught at the same height as it is released. What is the initial velocity of the ball relative to the quarterback?


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.55 – Calculating Relative Velocity: An Airline Passenger Drops a Coin


Verify that the coin dropped by the airline passenger in the Example 3.8 travels 144 m horizontally while falling 1.50 m in the frame of reference of the Earth.


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.54 – Relative velocity of a runner


Near the end of a marathon race, the first two runners are separated by a distance of 45.0 m. The front runner has a velocity of 3.50 m/s, and the second a velocity of 4.20 m/s. (a) What is the velocity of the second runner relative to the first? (b) If the front runner is 250 m from the finish line, who will win the race, assuming they run at constant velocity? (c) What distance ahead will the winner be when she crosses the finish line?


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.53 – Motion of a seagull flying


A seagull flies at a velocity of 9.00 m/s straight into the wind. (a) If it takes the bird 20.0 min to travel 6.00 km relative to the Earth, what is the velocity of the wind? (b) If the bird turns around and flies with the wind, how long will he take to return 6.00 km? (c) Discuss how the wind affects the total round-trip time compared to what it would be with no wind.


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.52 – Motion of a human-powered aircraft


Bryan Allen pedaled a human-powered aircraft across the English Channel from the cliffs of Dover to Cap Gris-Nez on June 12, 1979. (a) He flew for 169 min at an average velocity of 3.53 m/s in a direction 45º south of east. What was his total displacement? (b) Allen encountered a headwind averaging 2.00 m/s almost precisely in the opposite direction of his motion relative to the Earth. What was his average velocity relative to the air? (c) What was his total displacement relative to the air mass?


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.


College Physics 3.51 – Construct Your Own Problem


Consider a ball tossed over a fence. Construct a problem in which you calculate the ball’s needed initial velocity to just clear the fence. Among the things to determine are; the height of the fence, the distance to the fence from the point of release of the ball, and the height at which the ball is released. You should also consider whether it is possible to choose the initial speed for the ball and just calculate the angle at which it is thrown. Also, examine the possibility of multiple solutions given the distances and heights you have chosen.


Solution:

Solution will be posted soon.

We already have the answer to the problem, but we need some time to encode it. For the mean time, you can request the solution to the problem to expedite the posting of solution. Also, you can purchase the complete solution manual of College Physics by Openstax.