Tag Archives: College Physics by Openstax

Problem 6-8: An integrated problem involving circular motion, momentum, and projectile motion


Integrated Concepts

When kicking a football, the kicker rotates his leg about the hip joint.

(a) If the velocity of the tip of the kicker’s shoe is 35.0 m/s and the hip joint is 1.05 m from the tip of the shoe, what is the shoe tip’s angular velocity?

(b) The shoe is in contact with the initially stationary 0.500 kg football for 20.0 ms. What average force is exerted on the football to give it a velocity of 20.0 m/s?

(c) Find the maximum range of the football, neglecting air resistance.


Solution:

Part A

From the given problem, we are given the following values: v=35.0 m/sv=35.0\ \text{m/s} and r=1.05 mr=1.05\ \text{m}. We are required to solve for the angular velocity ω\omega.

The linear velocity, v v and the angular velocity, ω \omega are related by the equation

v=rω or ω=vrv=r\omega \ \text{or} \ \omega=\frac{v}{r}

If we substitute the given values into the formula, we can directly solve for the value of the angular velocity. That is,

ω=vrω=35.0 m/s1.05 mω=33.3333 rad/secω=33.3 rad/s  (Answer)\begin{align*} \omega & = \frac{v}{r} \\ \\ \omega & = \frac{35.0\ \text{m/s}}{1.05\ \text{m}} \\ \\ \omega & = 33.3333\ \text{rad/sec} \\ \\ \omega & = 33.3 \ \text{rad/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

For this part of the problem, we are going to use Newton’s second law of motion in term of linear momentum which states that the net external force equals the change in momentum of a system divided by the time over which it changes. That is

Fnet=ΔpΔt=m(vfvi)tF_{net} = \frac{\Delta p}{\Delta t} = \frac{m\left( v_f - v_i \right)}{t}

For this problem, we are given the following values: m=0.500 kgm=0.500\ \text{kg}, t=20.0×103 st=20.0\times 10^{-3} \ \text{s}, vf=20.0 m/sv_{f}=20.0\ \text{m/s}, and vi=0v_{i}=0. Substituting all these values into the equation, we can solve directly for the value of the net external force.

Fnet=(0.500 kg)(20.0 m/s0 m/s)20.0×103 sFnet=500 N  (Answer)\begin{align*} F_{net} & = \frac{\left( 0.500\ \text{kg} \right)\left( 20.0\ \text{m/s}-0\ \text{m/s} \right)}{20.0\times 10^{-3}\ \text{s}} \\ \\ F_{net} & = 500\ \text{N} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part C

This is a problem on projectile motion. In this particular case, we are solving for the range of the projectile. The formula for the range of a projectile is

R=v02sin2θgR=\frac{v_{0}^2 \sin 2\theta}{g}

We are asked to solve for the maximum range, and we know that the maximum range happens when the angle θ\theta is 4545^\circ .

R=(20.0 m/s)2sin(2(45))9.81 m/s2R=40.7747 mR=40.8 m  (Answer)\begin{align*} R & = \frac{\left( 20.0\ \text{m/s} \right)^{2} \sin \left( 2\left( 45^\circ \right) \right)}{9.81 \ \text{m/s}^2} \\ \\ R & = 40.7747\ \text{m} \\ \\ R & = 40.8 \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-7: Calculating the angular velocity of a truck’s rotating tires


A truck with 0.420-m-radius tires travels at 32.0 m/s. What is the angular velocity of the rotating tires in radians per second? What is this in rev/min?


Solution:

The linear velocity, vv and the angular velocity ω\omega are related by the equation

v=rω or ω=vrv=r\omega \ \text{or} \ \omega=\frac{v}{r}

From the given problem, we are given the following values: r=0.420 mr=0.420 \ \text{m} and v=32.0 m/sv=32.0 \ \text{m/s}. Substituting these values into the formula, we can directly solve for the angular velocity.

ω=vrω=32.0 m/s0.420 mω=76.1905 rad/sω=76.2 rad/s  (Answer)\begin{align*} \omega & = \frac{v}{r} \\ \\ \omega & = \frac{32.0 \ \text{m/s}}{0.420 \ \text{m}} \\ \\ \omega & = 76.1905 \ \text{rad/s} \\ \\ \omega & = 76.2 \ \text{rad/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Then, we can convert this into units of revolutions per minute:

ω=76.1905 radsec×1 rev2π rad×60 sec1 minω=727.5657 rev/minω=728 rev/min  (Answer)\begin{align*} \omega & = 76.1905 \ \frac{\bcancel{\text{rad}}}{\bcancel{\text{sec}}}\times \frac{1 \ \text{rev}}{2\pi\ \bcancel{\text{rad}}}\times \frac{60\ \bcancel{\text{sec}}}{1\ \text{min}} \\ \\ \omega & = 727.5657\ \text{rev/min} \\ \\ \omega & = 728\ \text{rev/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-6: Calculating the linear velocity of the lacrosse ball with the given angular velocity


In lacrosse, a ball is thrown from a net on the end of a stick by rotating the stick and forearm about the elbow. If the angular velocity of the ball about the elbow joint is 30.0 rad/s and the ball is 1.30 m from the elbow joint, what is the velocity of the ball?


Solution:

The linear velocity, vv and the angular velocity, ω\omega of a rotating object are related by the equation

v=rωv=r\omega

From the given problem, we have the following values: ω=30.0 rad/s\omega=30.0 \ \text{rad/s} and r=1.30 mr=1.30 \ \text{m} . Substituting these values in the formula, we can directly solve for the linear velocity.

v=rωv=(1.30 m)(30.0 rad/s)v=39.0 m/s  (Answer)\begin{align*} v & =r\omega \\ \\ v & = \left( 1.30 \ \text{m} \right)\left( 30.0 \ \text{rad/s} \right) \\ \\ v & = 39.0 \ \text{m/s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-5: Calculating the angular velocity of a baseball pitcher’s forearm during a pitch


A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in the pitcher’s hand is 35.0 m/s and the ball is 0.300 m from the elbow joint, what is the angular velocity of the forearm?


Solution:

We are given the linear velocity of the ball in the pitcher’s hand, v=35.0 m/sv=35.0\ \text{m/s}, and the radius of the curvature, r=0.300 mr=0.300 \ \text{m}. Linear velocity vv and angular velocity ω\omega are related by

v=rω or ω=vrv=r\omega \ \text{or} \ \omega=\frac{v}{r}

If we substitute the given values into our formula, we can solve for the angular velocity directly. That is,

ω=vrω=35.0 m/s0.300 mω=116.6667 rad/sω=117 rad/s  (Answer)\begin{align*} \omega & = \frac{v}{r} \\ \\ \omega & = \frac{35.0 \ \text{m/s}}{0.300 \ \text{m}} \\ \\ \omega & = 116.6667 \ \text{rad/s} \\ \\ \omega & = 117 \ \text{rad/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The angular velocity of the forearm is about 117 radians per second.


Advertisements
Advertisements

Problem 6-4: Period, angular velocity, and linear velocity of the Earth


(a) What is the period of rotation of Earth in seconds? (b) What is the angular velocity of Earth? (c) Given that Earth has a radius of 6.4×106 m at its equator, what is the linear velocity at Earth’s surface?


Solution:

Part A

The period of a rotating body is the time it takes for 1 full revolution. The Earth rotates about its axis, and complete 1 full revolution in 24 hours. Therefore, the period is

Period=24 hoursPeriod=24 hours×3600 seconds1 hourPeriod=86400 seconds  (Answer)\begin{align*} \text{Period} & = 24 \ \text{hours} \\ \\ \text{Period} & = 24 \ \text{hours} \times \frac{3600 \ \text{seconds}}{1 \ \text{hour}} \\ \\ \text{Period} & = 86400 \ \text{seconds} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

The angular velocity ω\omega is the rate of change of an angle,

ω=ΔθΔt,\omega = \frac{\Delta \theta}{\Delta t},

where a rotation Δθ\Delta \theta takes place in a time Δt\Delta t.

From the given problem, we are given the following: Δθ=2πradian=1 revolution\Delta \theta = 2\pi \text{radian} = 1 \ \text{revolution}, and Δt=24 hours=1440 minutes=86400 seconds\Delta t =24\ \text{hours} = 1440 \ \text{minutes}= 86400 \ \text{seconds}. Therefore, the angular velocity is

ω=ΔθΔtω=1 revolution1440 minutesω=6.94×104 rpm  (Answer)\begin{align*} \omega & = \frac{\Delta\theta}{\Delta t} \\ \\ \omega & = \frac{1 \ \text{revolution}}{1440 \ \text{minutes}}\\ \\ \omega & = 6.94 \times 10^{-4}\ \text{rpm}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

We can also express the angular velocity in units of radians per second. That is

ω=ΔθΔtω=2π radian86400 secondsω=7.27×105 radians/second  (Answer)\begin{align*} \omega & = \frac{\Delta\theta}{\Delta t} \\ \\ \omega & = \frac{2\pi \ \text{radian}}{86400 \ \text{seconds}}\\ \\ \omega & = 7.27 \times 10^{-5}\ \text{radians/second}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part C

The linear velocity vv, and the angular velocity ω\omega are related by the formula

v=rωv = r \omega

From the given problem, we are given the following values: r=6.4×106 metersr=6.4 \times 10^{6} \ \text{meters}, and ω=7.27×105 radians/second\omega = 7.27 \times 10^{-5}\ \text{radians/second}. Therefore, the linear velocity at the surface of the earth is

v=rωv=(6.4×106 meters)(7.27×105 radians/second)v=465.28 m/s  (Answer)\begin{align*} v & =r \omega \\ \\ v & = \left( 6.4 \times 10^{6} \ \text{meters} \right)\left( 7.27 \times 10^{-5}\ \text{radians/second} \right) \\ \\ v & = 465.28 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-3: Calculating the number of revolutions given the tires radius and distance traveled


An automobile with 0.260 m radius tires travels 80,000 km before wearing them out. How many revolutions do the tires make, neglecting any backing up and any change in radius due to wear?


Solution:

The rotation angle Δθ\Delta \theta is defined as the ratio of the arc length to the radius of curvature:

Δθ=Δsr\Delta \theta = \frac{\Delta s}{r}

where arc length Δs\Delta s is distance traveled along a circular path and rr is the radius of curvature of the circular path.

From the given problem, we are given the following quantities: r=0.260 mr=0.260 \ \text{m}, and Δs=80000 km\Delta s = 80000 \ \text{km}.

Δθ=ΔsrΔθ=80000 km×1000 m1 km0.260 mΔθ=307.6923077×106 radians×1 rev2π radiansΔθ=48970751.72 revolutionsΔθ=4.90×107 revolutions  (Answer)\begin{align*} \Delta \theta & = \frac{\Delta s}{r} \\ \\ \Delta \theta & = \frac{80000 \ \text{km} \times \frac{1000 \ \text{m}}{1 \ \text{km}}}{0.260 \ \text{m}} \\ \\ \Delta \theta & = 307.6923077 \times 10^{6} \ \text{radians} \times\frac{1 \ \text{rev}}{2\pi \ \text{radians}} \\ \\ \Delta \theta & = 48970751.72 \ \text{revolutions} \\ \\ \Delta \theta & = 4.90 \times 10^{7} \ \text{revolutions} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-2: Conversion of units from rpm to revolutions per second and radians per second


Microwave ovens rotate at a rate of about 6 rev/min. What is this in revolutions per second? What is the angular velocity in radians per second?


Solution:

This is a problem on conversion of units. We are given a rotation in revolutions per minute and asked to convert this to revolutions per second and radians per second.

For the first part, we are asked to convert 6 rev/min to revolutions per second.

6 revminute=6 revminute×1 minute60 seconds=0.1 rev/second  (Answer)\begin{align*} \frac{6 \ \text{rev}}{\text{minute}} & = \frac{6 \ \text{rev}}{\bcancel{\text{minute}}} \times \frac{1 \ \bcancel{\text{minute}}}{60 \ \text{seconds}} \\ \\ & = 0.1 \ \text{rev/second} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

For the next part, we are going to convert 6 rev/min to radians per second.

6 revminute=6 revminute×2π radians1 rev×1 minute60 seconds=0.6283 rad/sec  (Answer)\begin{align*} \frac{6 \ \text{rev}}{\text{minute}} & = \frac{6 \ \bcancel{\text{rev}}}{\bcancel{\text{minute}}} \times \frac{2\pi \ \text{radians}}{1 \ \bcancel{\text{rev}}} \times \frac{1 \ \bcancel{\text{minute}}}{60 \ \text{seconds}} \\ \\ & = 0.6283 \ \text{rad/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 4 Problem 8


What is the deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h? (Such deceleration caused one test subject to black out and have temporary blindness.)


Solution:

We are given the following: v0=1000 km/hv_{0}=1000 \ \text{km/h}, vf=0 km/hv_{f}=0 \ \text{km/h}, Δt=1.1 s\Delta t = 1.1 \ \text{s}.

The acceleration is computed as the change in velocity divided by the change in time.

a=ΔvΔta=vfvoΔta=(0 km/h1000 km/h)(1000 m1 km)(1 h3600 s)1.1 sa=252.5 m/s2  (Answer)\begin{align*} a & = \frac{\Delta v}{\Delta t} \\ a & = \frac{v_{f}-v_{o}}{\Delta t} \\ a & = \frac{\left( 0\ \text{km/h}-1000 \ \text{km/h} \right)\left( \frac{1000 \ \text{m}}{1\ \text{km}} \right) \left( \frac{1\ \text{h}}{3600\ \text{s}} \right)}{1.1\ \text{s}} \\ a & = -252.5\ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 4 Problem 7


(a) If the rocket sled shown in Figure 4.31 starts with only one rocket burning, what is the magnitude of its acceleration? Assume that the mass of the system is 2100 kg, the thrust TT is 2.4×1042.4 \times 10^{4} N, and the force of friction opposing the motion is known to be 650 N. (b) Why is the acceleration not one-fourth of what it is with all rockets burning?


Solution:

Considering the direction of motion as the positive direction, we are given the following: T=2.4×104 NT=2.4 \times 10^4 \ \text{N}, f=650 Nf=-650 \ \text{N}, and mass, m=2100 kgm=2100 \ \text{kg}.

Part A. The magnitude of the acceleration can be computed using Newton’s Second Law of Motion.

ΣF=ma2.4×104 N650 N=2100 kg×a23350=2100a233502100=2100a2100a=233502100a=11 m/s2  (Answer)\begin{align*} \Sigma F & =ma \\ 2.4\times 10^4 \ \text{N}-650 \ \text{N} & = 2100 \ \text{kg}\times a \\ 23350 & = 2100 a \\ \frac{23350}{2100} & = \frac{\cancel{2100} a}{\cancel{2100}} \\ a & = \frac{23350}{2100} \\ a & = 11 \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B. The acceleration is not one-fourth of what it was with all rockets burning because the frictional force is still as large as it was with all rockets burning.   (Answer)\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)


Advertisements
Advertisements

College Physics by Openstax Chapter 4 Problem 6


The same rocket sled drawn in Figure 4.30 is decelerated at a rate of 196 m/s2. What force is necessary to produce this deceleration? Assume that the rockets are off. The mass of the system is 2100 kg.


Solution:

Since the rockets are off, the only force acting on the sled is the friction ff. This force is against the direction of motion. By using Newton’s Second Law of Motion, we have.

ΣF=maf=maf=(2100 kg)(196 m/s2)f=411600 Nf=411600 Nf=411.6 kN  (Answer)\begin{align*} \Sigma F & = ma \\ -f & = ma \\ -f & = \left( 2100 \ \text{kg} \right)\left( -196 \ \text{m/s}^{2} \right) \\ -f & = -411600 \ \text{N} \\ f & = 411600 \ \text{N} \\ f & = 411.6 \ \text{kN} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The force necessary to produce the given deceleration is 411.6 kN.


Advertisements
Advertisements