PROBLEM:
Tectonic plates are large segments of the Earth’s crust that move slowly. Suppose that one such plate has an average speed of 4.0 cm/year.
(a) What distance does it move in 1.0 s at this speed?
(b) What is its speed in kilometers per million years?
SOLUTION:
Part A
We know that the formula for the distance traveled, d, if we are given rate, r, and time, t is given by d=r\times t.
The rate in cm/s is
\begin{align*} r & =\left(4\:\frac{\text{cm}}{\bcancel{\text{year}}}\times \frac{1\:\bcancel{\text{year}}}{365\:\frac{1}{4}\:\bcancel{\text{days}}}\times \frac{1\:\bcancel{\text{day}}}{24\:\bcancel{\text{hours}}}\times \frac{1\:\bcancel{\text{hour}}}{60\:\bcancel{\text{mins}}}\times \frac{1\:\bcancel{\text{min}}}{60\:\text{s}}\right) \\ & = 1.2675 \times 10^{-7} \ \text{cm/s} \end{align*}
The distance traveled is
\begin{align*} d & = r \times t \\ d & = \left( 1.2675\times 10^{-7} \ \text{cm/s} \right)\left( 1.0 \ \text{s} \right) \\ d & = 1.3\times 10^{-7} \ \text{cm} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Part B
We need to convert 4.0 cm/year to km/My.
\begin{align*} 4.0 \ \frac{\text{cm}}{\text{year}} & = 4.0\:\frac{\bcancel{\text{cm}}}{\bcancel{\text{year}}}\times \frac{1\:\bcancel{\text{m}}}{100\:\bcancel{\text{cm}}}\times \frac{1\:\text{km}}{1000\:\bcancel{\text{m}}}\times \frac{1\:000\:000\:\bcancel{\text{years}}}{1\:\text{My}} \\ \\ & =40\:\text{km/My} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Therefore, the speed of the tectonic plates is 40 km/My.
You must be logged in to post a comment.