Find the following for path D in Figure 3.56: (a) the total distance traveled and (b) the magnitude and direction of the displacement from start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.
Solution:
Part A
Looking at path D, we can see that it moves 2 blocks downward, 6 blocks to the right, 4 blocks upward, and 1 block to the left. Thus, the total distance of path D is
Looking at the initial and final position of path D, the final position is 5 blocks to the right or 600 meters to the right of the initial position, and 2 blocks or 240 meters upward from the initial position. Refer to the figure below.
Using the right triangle, we can solve for the displacement using the Pythagorean Theorem.
Find the following for path C in Figure 3.56: (a) the total distance traveled and (b) the magnitude and direction of the displacement from start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.
Solution:
Part A
Looking at path C, it moves 1 block upward, 5 blocks to the right, 2 blocks downward, 1 block to the left, 1 block upward, and 3 blocks to the left. So, the total distance is
It can be seen from the figure that the end of path C is just one block to the right from the starting point. Therefore, the magnitude of the displacement is
(a) Repeat the problem two problems prior, but for the second leg you walk 20.0 m in a direction 40.0º north of east (which is equivalent to subtracting B from A —that is, to finding R’=A−B ). (b) Repeat the problem two problems prior, but now you first walk 20.0 m in a direction 40.0º south of west and then 12.0 m in a direction 20.0º east of south (which is equivalent to subtracting A from B —that is, to finding R”=B−A=−R’ ). Show that this is the case.
Repeat the problem above, but reverse the order of the two legs of the walk; show that you get the same final result. That is, you first walk leg B , which is 20.0 m in a direction exactly 40º south of west, and then leg A , which is 12.0 m in a direction exactly 20º west of north. (This problem shows that A+B=B+A.)
Solution:
Consider Figure 3-6A below with B drawn first before A.
Compute for the value of angle β by adding 20° and the complement of 40°. This is by simple geometry.
Suppose you first walk 12.0 m in a direction 20º west of north and then 20.0 m in a direction 40.0º south of west. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A and B, as in Figure 3.54, then this problem finds their sum R=A+B.)
Solution:
Consider Figure 3.5A shown below.
Before we can use cosine law to solve for the magnitude of R, we need to solve for the interior angle 𝛽 first. The value of 𝛽 can be calculated by inspecting the figure and use simple knowledge on geometry. It is equal to the sum of 20° and the complement of 40°. That is
Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements \vec{A} and \vec{B} , as in Figure 3.53, then this problem asks you to find their sum \vec{R}=\vec{A}+\vec{B} .)
Solution:
Consider Figure 3.54A.
The resultant of the two vectors \vec{A} and \vec{B} is labeled \vec{R}. This \vec{R} is directed \theta ^{\circ} from the x-axis.
We shall use the right triangle formed to solve for the unknowns.
Find the following for path B in Figure 3.52: (a) The total distance traveled, and (b) The magnitude and direction of the displacement from start to finish.
(a) Take the slope of the curve in Figure 2.64 to find the jogger’s velocity at t=2.5 s. (b) Repeat at 7.5 s. These values must be consistent with the graph in Figure 2.65.
Solution:
Part A
To find the slope at t=2.5 s, we need the position values at t= 0 s and t=5 s. When t = 0 \ \text{s}, x = 0 \ \text{m}, and when t = 5 \ \text{s}, x = 17.5 \ \text{m}. The velocity at t=2.5 s is
Construct the position graph for the subway shuttle train as shown in Figure 2.18(a). Your graph should show the position of the train, in kilometers, from t = 0 to 20 s. You will need to use the information on acceleration and velocity given in the examples for this figure.
(a) Position of the train over time. Notice that the train’s position changes slowly at the beginning of the journey, then more and more quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the velocity remains constant, the position changes at a constant rate. (b) The velocity of the train over time. The train’s velocity increases as it accelerates at the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.
You must be logged in to post a comment.