Tag Archives: College Physics

Solution Guides to College Physics by Openstax Chapter 8 Banner

Chapter 8: Linear Momentum and Collisions

Advertisements

Linear Momentum and Force

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Advertisements

Impulse

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Advertisements

Conservation of Momentum

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Advertisements

Elastic Collisions in One Dimension

Problem 28

Problem 29

Problem 30

Advertisements

Inelastic Collisions in One Dimension

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Advertisements

Collisions of Point Masses in Two Dimensions

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Advertisements

Introduction to Rocket Propulsion

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Advertisements

Advertisements
Advertisements
Solution Guides to College Physics by Openstax Chapter 7 Banner

Chapter 7: Work, Energy, and Energy Resources


Work: The Scientific Definition

Problem 7

Problem 8

Kinetic Energy and the Work-Energy Theorem

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Gravitational Potential Energy

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Conservative Forces and Potential Energy

Problem 22

Problem 23

Nonconservative Forces

Problem 24

Problem 25

Conservation of Energy

Problem 26

Problem 27

Problem 28

Problem 29

Power

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Work, Energy, and Power in Humans

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

World Energy Use

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Problem 65

Problem 66

Problem 67

Problem 68

Problem 69

Problem 70


Solution Guides to College Physics by Openstax Chapter 6 Banner

Chapter 6: Uniform Circular Motion and Gravitation

Advertisements

Rotation Angle and Angular Velocity

Advertisements

Centripetal Acceleration

Problem 22

Advertisements

Centripetal Force

Problem 29

Problem 30

Problem 31

Problem 32

Advertisements

Newton’s Universal Law of Gravitation

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Advertisements

Satellites and Kepler’s Laws: An Argument for Simplicity

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Advertisements

Advertisements
Advertisements
Solution Guides to College Physics by Openstax Chapter 5 Banner

Chapter 5: Further Applications of Newton’s Laws: Friction, Drag, and Elasticity

Advertisements

Friction

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Advertisements

Drag Forces

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Advertisements

Elasticity: Stress and Strain

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Advertisements

Advertisements
Advertisements
Solution Guides to College Physics by Openstax Chapter 4 Banner

Chapter 4: Dynamics: Force and Newton’s Laws of Motion

Advertisements

Newton’s Second Law of Motion: Concept of a System

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Advertisements

Newton’s Third Law of Motion: Symmetry in Forces

Problem 15

Problem 16

Advertisements

Normal, Tension, and Other Example of Forces

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Advertisements

Problem Solving Strategies

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Advertisements

Further Applications of Newton’s Laws of Motion

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Advertisements

Further Applications of Newton’s Laws of Motion

Problem 52

Problem 53

Problem 54


Advertisements
Advertisements
Solution Guides to College Physics by Openstax Chapter 3 Banner

Chapter 3: Two-Dimensional Kinematics

Advertisements

Vector Addition and Subtraction: Graphical Methods

Advertisements

Vector Addition and Subtraction: Analytical Methods

Advertisements

Projectile Motion

Advertisements

Addition of Velocities

Problem 64

Problem 65

Problem 66

Problem 67

Problem 68

Problem 69

Problem 70


Advertisements
Advertisements

Physics



Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 37


Serving at a speed of 170 km/h, a tennis player hits the ball at a height of 2.5 m and an angle θ below the horizontal. The baseline is 11.9 m from the net, which is 0.91 m high. What is the angle θ such that the ball just crosses the net? Will the ball land in the service box, whose service line is 6.40 m from the net?


Solution:

Note: The publication of the solution to this problem is on its way. Sorry for the inconvenience.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 36


The world long jump record is 8.95 m (Mike Powell, USA, 1991). Treated as a projectile, what is the maximum range obtainable by a person if he has a take-off speed of 9.5 m/s? State your assumptions.


Solution:

We are required to solve for the maximum distance. To do this, we can use the formula for the range of a projectile motion. However, we need the following assumptions:

  • The jumper leaves the ground in a 45° angle from the horizontal, for maximum horizontal displacement.
  • The jumper is on level ground, and the motion started from the ground.

The formula for range is

\text{R}=\frac{\text{v}_{\text{o}}^2\sin 2\theta _{\text{o}}}{\text{g}}

Since we are already given the necessary details, we can now solve for the range.

\begin{align*}
 \text{R}&=\frac{\left(9.5\:\text{m/s}\right)^2\:\sin 90^{\circ} }{9.81\:\text{m/s}^2}\\
\text{R}&=9.20\:\text{m}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ 
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 35


In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)


Solution:

We are required to solve for the distance in a standing broad jump. To do this, we can use the formula for the range of a projectile motion. However, we need the following assumptions:

  • The jumper leaves the ground in a 45° angle from the horizontal, for maximum horizontal displacement.
  • The jumper is on level ground.

The formula for the range is

\text{R}=\frac{\text{v}_{\text{o}}^2\:\sin 2\theta _{\text{o}}}{\text{g}}

To find the initial velocity of the jump, vo, we shall use the kinematic formula from the crouch position to the time the person leaves the ground.

\text{v}_{\text{f}}^2=\text{v}_{\text{o}}^2+2\text{ax}

In this case, the final velocity will be the initial velocity of the jump.

\begin{align*}
 \text{v}_{\text{f}}=\sqrt{\left(0\:\text{m/s}\right)^2+2\left(1.25\times 9.81\:\text{m/s}^2\right)\left(0.600\:\text{m}\right)}=3.84\:\text{m/s}
\end{align*}

So, the initial velocity of the flight is 3.84 m/s. We can now use the formula for range.

\begin{align*}
\text{R}&=\frac{\text{v}_{\text{o}}^2\:\sin 2\theta_{\text{o}}}{\text{g}} \\
\text{R}&=\frac{\left(3.84\:\text{m/s}\right)^2\:\sin \left(2\times 45^{\circ} \right)}{9.81\:\text{m/s}^2}\\
\text{R}&=1.50\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements