A composite bar consists of an aluminum section rigidly fastened between a bronze section and a steel section as shown in Fig. 1-8a. Axial loads are applied at the positions indicated. Determine the stress in each section.
Solution:
We must first determine the axial load in each section to calculate the stresses. The free-body diagrams have been drawn by isolating the portion of the bar lying to the left of imaginary cutting planes. Identical results would be obtained if portions lying to the right of the cutting planes had been considered.
Solve for the internal axial load of the bronze
\begin{align*} \sum_{}^{}F_x & = 0 \to \\ -4000\ \text{lb}+P_{br} & = 0 \\ P_{br} & = 4000 \ \text{lb} \ \text{(tension)} \end{align*}
Solve for the internal axial load of the aluminum
\begin{align*} \sum_{}^{}F_x & = 0 \\ -4000 \ \text{lb} + 9000 \ \text{lb} - P_{al} & = 0 \\ P_{al} & = 5000 \ \text{lb} \ \text{(Compression)} \end{align*}
Solve for the internal axial load of the aluminum
\begin{align*} \sum_{}^{}F_x & = 0 \\ -4000\ \text{lb} + 9000 \ \text{lb} + 2000\ \text{lb} - P_{st} & =0 \\ P_{st} & = 7000 \ \text{lb} \ \text{(Compression)} \end{align*}
We can now solve the stresses in each section.
For the bronze
\begin{align*} \sigma_{br} & = \frac{P_{br}}{A_{br}} \\ & = \frac{4000\ \text{lb}}{1.2 \ \text{in}^2} \\ & = 3330 \ \text{psi}\ \text{(Tension)} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
For the aluminum
\begin{align*} \sigma_{al} & = \frac{P_{br}}{A_{al}} \\ & = \frac{5000\ \text{lb}}{1.8 \ \text{in}^2} \\ & = 2780 \ \text{psi}\ \text{(Compression)} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
For the steel
\begin{align*} \sigma_{st} & = \frac{P_{st}}{A_{st}} \\ & = \frac{7000\ \text{lb}}{1.6 \ \text{in}^2} \\ & = 4380\ \text{psi}\ \text{(Compression)} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Advertisements
Advertisements
You must be logged in to post a comment.