The members of a truss are pin connected at joint O. Determine the magnitude of F1 and its angle θ for equilibrium. Set F2 =6 kN.
Figure 3.1/3.2
Solution:
Free-body diagram:
Equations of Equilibrium:
The summation of forces in the x-direction:
∑ F x = 0 6 sin 70 ° + F 1 cos θ − 5 cos 30 ° − 4 5 ( 7 ) = 0 F 1 cos θ = 4.2920 ( 1 ) \begin{aligned}
\sum F_x & = 0 &\\
6 \sin 70 \degree + F_1 \cos \theta - 5 \cos 30 \degree - \dfrac {4}{5} \left(7 \right) & = 0 & \\
F_1 \cos \theta & = 4.2920 & (1)
\end{aligned} ∑ F x 6 sin 70° + F 1 cos θ − 5 cos 30° − 5 4 ( 7 ) F 1 cos θ = 0 = 0 = 4.2920 ( 1 )
The summation of forces in the y-direction:
∑ F y = 0 6 cos 70 ° + 5 sin 30 ° − F 1 sin θ − 3 5 ( 7 ) = 0 F 1 sin θ = 0.3521 ( 2 ) \begin{aligned}
\sum F_y & =0 & \\
6 \cos 70 \degree+5 \sin 30 \degree - F_1 \sin \theta - \dfrac{3}{5} \left( 7 \right ) & =0 & \\
F_1 \sin \theta &=0.3521 & (2)\\
\end{aligned} ∑ F y 6 cos 70° + 5 sin 30° − F 1 sin θ − 5 3 ( 7 ) F 1 sin θ = 0 = 0 = 0.3521 ( 2 )
We came up with 2 equations with unknowns F 1 F_1 F 1 and θ \theta θ . To solve the equations simultaneously, we can use the method of substitution.
Using equation 1, solve for F 1 F_1 F 1 in terms of θ \theta θ .
F 1 cos θ = 4.2920 F 1 = 4.2920 cos θ ( 3 ) \begin{aligned}
F_1 \cos \theta & = 4.2920 &\\
F_1 & =\dfrac{4.2920}{ \cos \theta } & (3) \\
\end{aligned} F 1 cos θ F 1 = 4.2920 = cos θ 4.2920 ( 3 )
Now, substitute this equation (3) to equation (2).
F 1 sin θ = 0.3521 ( 4.2920 cos θ ) sin θ = 0.3521 4.2920 ⋅ sin θ cos θ = 0.3521 4.2920 tan θ = 0.3521 tan θ = 0.3521 4.2920 θ = tan − 1 0.3521 4.2920 θ = 4.69 ° \begin{aligned}
F_1 \sin \theta & = 0.3521 \\
\left ( \dfrac {4.2920}{\cos \theta} \right) \sin \theta & =0.3521 \\
4.2920 \cdot \dfrac{\sin \theta}{\cos \theta} & = 0.3521 \\
4.2920 \tan \theta & = 0.3521 \\
\tan \theta & = \dfrac{0.3521}{4.2920} \\
\theta &= \tan ^{-1} \dfrac{0.3521}{4.2920} \\
\theta & = 4.69 \degree
\end{aligned} F 1 sin θ ( cos θ 4.2920 ) sin θ 4.2920 ⋅ cos θ sin θ 4.2920 tan θ tan θ θ θ = 0.3521 = 0.3521 = 0.3521 = 0.3521 = 4.2920 0.3521 = tan − 1 4.2920 0.3521 = 4.69°
Substitute the solved value of θ \theta θ to equation (3).
F 1 = 4.2920 cos θ F 1 = 4.2920 cos 4.69 ° F 1 = 4.31 kN \begin{aligned}
F_1 & = \dfrac{4.2920}{\cos \theta} \\
F_1 &= \dfrac{4.2920}{\cos 4.69 \degree} \\
F_1 & = 4.31 \text{kN}
\end{aligned} F 1 F 1 F 1 = cos θ 4.2920 = cos 4.69° 4.2920 = 4.31 kN
Therefore, the answers to the questions are:
F 1 = 4.31 kN θ = 4.69 ° \begin{aligned}
F_1= & \:4.31 \: \text {kN} \\
\theta = & \: 4.69 \degree
\end{aligned}
F 1 = θ = 4.31 kN 4.69°
You must be logged in to post a comment.