Tag Archives: Convert

Problem 1-2: Converting car speed of 33 m/s to kilometers per hour and determining if it exceeds the speed limit

Advertisements
Advertisements

PROBLEM:

A car is traveling at a speed of 33 m/s.
(a) What is its speed in kilometers per hour?
(b) Is it exceeding the 90 km/h speed limit?


Advertisements
Advertisements

SOLUTION:

Part A

\begin{aligned}
33 \ \text{m/s} & =33\ \frac{\text{m}}{\text{s}} \times \frac{1\ \text{km}}{1000 \ \text{m}} \times \frac{3600\ \text{s}}{1 \ \text{hr}} \\
\\
& =118.8 \ \text{km/hr} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{aligned}

Part B

At 118.8 km/h, the car is traveling faster than the speed limit of 90 km/h. (Answer)


Advertisements
Advertisements

Problem 1-1: Converting 100 km/h to meters per second and miles per hour

Advertisements
Advertisements

PROBLEM:

The speed limit on some interstate highways is roughly 100 km/h.
(a) What is this in meters per second?
(b) How many miles per hour is this?


Advertisements
Advertisements

SOLUTION:

Part A

\begin{aligned}
100 \  \frac{ \text{km}}{\text{hour}} & =100 \ \frac{ \bcancel{\text{km}}}{\bcancel{\text{hour}}} \times \frac{1000 \ \text{m}}{1 \ \bcancel{\text{km}}} \times \frac{1 \ \bcancel{\text{hour}}}{3600 \ \text{sec}}\\
\\
&=27.7 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{aligned}

Part B

\begin{aligned}
100 \  \frac{ \text{km}}{\text{hour}} & =100 \ \frac{ \bcancel{\text{km}}}{\text{hour}} \times\frac{1 \ \text{mile}}{1.609\ \bcancel{\text{km}}} \\
\\
&=62.2 \ \text{mi/hr} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{aligned}
Advertisements
Advertisements

Video Solution:


Advertisements
Advertisements