Textbook Solutions for Calculus I Differential and Integral Calculus by Feliciano and Uy Advertisements Advertisements
Differential and Integral Calculus by Feliciano and Uy Complete Solution Manual Chapter 1: Limits Chapter 2: Differentiation of Algebraic Functions Chapter 3: Some Applications of the Derivatives Chapter 4: Differentiation of Transcendental Functions Chapter 5: The Indeterminate Forms Chapter 6: The Differential Chapter 7: Derivatives From Parametric Equations; Radius and Center of Curvature Chapter 8: Partial Differentiation Chapter 9: The Indefinite Integral Chapter 10: Methods of Integration Chapter 11: The Definite Integral Chapter 12: Geometric Applications of the Definite Integral Chapter 13: Physical Applications of the Definite Integral Chapter 14: Double Integration Chapter 12: Geometric Applications of the Definite Integral Advertisements Advertisements
Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 2 Advertisements Advertisements PROBLEM: If y=x2+3x\displaystyle y=\frac{x^2+3}{x}y=xx2+3, find xxx as a function of yyy. Advertisements Advertisements SOLUTION: y=x2+3xxy=x2+3x2−xy+3=0\begin{align*} y & = \frac{x^2+3}{x} \\ xy & =x^2+3 \\ x^2-xy+3&=0 \end{align*}yxyx2−xy+3=xx2+3=x2+3=0 Solve for xxx using the quadratic formula. We have a=1, b=−y, and c=3 a=1,\:b=-y,\:\text{and}\:c=3a=1,b=−y,andc=3 x=−b±b2−4ac 2ax=−(−y)±(−y)2−4(1)(3)2(1)x=y±y2−122 (Answer)\begin{align*} x & =\frac{-b\pm \sqrt{b^2-4ac}\:}{2a} \\ x & =\frac{ -\left(-y\right)\pm \sqrt{\left(-y\right)^2-4\left(1\right)\left(3\right)}}{2\left(1\right)} \\ x & =\frac{y\pm \sqrt{y^2-12}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}xxx=2a−b±b2−4ac=2(1)−(−y)±(−y)2−4(1)(3)=2y±y2−12 (Answer) Advertisements Advertisements
Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1 Problem 1 Advertisements Advertisements PROBLEM: If f(x)=x2−4x\displaystyle f\left(x\right)=x^2-4xf(x)=x2−4x, find a) f(−5)\displaystyle f\left(-5\right)f(−5) b) f(y2+1)\displaystyle f\left(y^2+1\right)f(y2+1) c) f(x+Δx)\displaystyle f\left(x+\Delta x\right)f(x+Δx) d) f(x+1)−f(x−1)\displaystyle f\left(x+1\right)-f\left(x-1\right)f(x+1)−f(x−1) Advertisements Advertisements SOLUTION: Part A f(−5)=(−5)2−4(−5)=25+20=45 (Answer)\begin{align*} f\left(-5\right) & =\left(-5\right)^2-4\left(-5\right)\\ & =25+20\\ & =45 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}f(−5)=(−5)2−4(−5)=25+20=45 (Answer) Part B f(y2+1)=(y2+1)2−4(y2+1)=y4+2y2+1−4y2−4=y4−2y2−3 (Answer)\begin{align*} f\left(y^2+1\right) & = \left(y^2+1\right)^2-4\left(y^2+1\right)\\ & =y^4+2y^2+1-4y^2-4\\ & =y^4-2y^2-3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}f(y2+1)=(y2+1)2−4(y2+1)=y4+2y2+1−4y2−4=y4−2y2−3 (Answer) Part C f(x+Δx)=(x+Δx)2−4(x+Δx)=(x+Δx)[(x+Δx)−4]=(x+Δx)(x+Δx−4) (Answer)\begin{align*} f\left(x+\Delta x\right)&=\left(x+\Delta x\right)^2-4\left(x+\Delta x\right)\\ & =\left(x+\Delta x\right)\left[\left(x+\Delta x\right)-4\right]\\ & =\left(x+\Delta x\right)\left(x+\Delta x-4\right) \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}f(x+Δx)=(x+Δx)2−4(x+Δx)=(x+Δx)[(x+Δx)−4]=(x+Δx)(x+Δx−4) (Answer) Part D f(x+1)−f(x−1)=[(x+1)2−4(x+1)]−[(x−1)2−4(x−1)]=[x2+2x+1−4x−4]−[x2−2x+1−4x+4]=x2−x2+2x−4x+2x+4x+1−4−1−4=4x−8=4(x−2) (Answer)\begin{align*} f\left(x+1\right)-f\left(x-1\right) & =\left[\left(x+1\right)^2-4\left(x+1\right)\right]-\left[\left(x-1\right)^2-4\left(x-1\right)\right]\\ & = \left[x^2+2x+1-4x-4\right]-\left[x^2-2x+1-4x+4\right]\\ & =x^2-x^2+2x-4x+2x+4x+1-4-1-4\\ & =4x-8\\ & =4\left(x-2\right) \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}f(x+1)−f(x−1)=[(x+1)2−4(x+1)]−[(x−1)2−4(x−1)]=[x2+2x+1−4x−4]−[x2−2x+1−4x+4]=x2−x2+2x−4x+2x+4x+1−4−1−4=4x−8=4(x−2) (Answer) Advertisements Advertisements
You must be logged in to post a comment.