Tag Archives: Differential Calculus

Differential and Integral Calculus by Feliciano and Uy Banner

Differential and Integral Calculus by Feliciano and Uy Complete Solution Manual



Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 2

Advertisements
Advertisements

PROBLEM:

If y=x2+3x\displaystyle y=\frac{x^2+3}{x}, find xx as a function of yy.


Advertisements
Advertisements

SOLUTION:

y=x2+3xxy=x2+3x2xy+3=0\begin{align*} y & = \frac{x^2+3}{x} \\ xy & =x^2+3 \\ x^2-xy+3&=0 \end{align*}

Solve for xx using the quadratic formula. We have a=1,b=y,andc=3 a=1,\:b=-y,\:\text{and}\:c=3

x=b±b24ac2ax=(y)±(y)24(1)(3)2(1)x=y±y2122  (Answer)\begin{align*} x & =\frac{-b\pm \sqrt{b^2-4ac}\:}{2a} \\ x & =\frac{ -\left(-y\right)\pm \sqrt{\left(-y\right)^2-4\left(1\right)\left(3\right)}}{2\left(1\right)} \\ x & =\frac{y\pm \sqrt{y^2-12}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1 Problem 1

Advertisements
Advertisements

PROBLEM:

If f(x)=x24x\displaystyle f\left(x\right)=x^2-4x, find

a) f(5)\displaystyle f\left(-5\right)

b) f(y2+1)\displaystyle f\left(y^2+1\right)

c) f(x+Δx)\displaystyle f\left(x+\Delta x\right)

d) f(x+1)f(x1)\displaystyle f\left(x+1\right)-f\left(x-1\right)


Advertisements
Advertisements

SOLUTION:

Part A

f(5)=(5)24(5)=25+20=45  (Answer)\begin{align*} f\left(-5\right) & =\left(-5\right)^2-4\left(-5\right)\\ & =25+20\\ & =45 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

f(y2+1)=(y2+1)24(y2+1)=y4+2y2+14y24=y42y23  (Answer)\begin{align*} f\left(y^2+1\right) & = \left(y^2+1\right)^2-4\left(y^2+1\right)\\ & =y^4+2y^2+1-4y^2-4\\ & =y^4-2y^2-3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part C

f(x+Δx)=(x+Δx)24(x+Δx)=(x+Δx)[(x+Δx)4]=(x+Δx)(x+Δx4)  (Answer)\begin{align*} f\left(x+\Delta x\right)&=\left(x+\Delta x\right)^2-4\left(x+\Delta x\right)\\ & =\left(x+\Delta x\right)\left[\left(x+\Delta x\right)-4\right]\\ & =\left(x+\Delta x\right)\left(x+\Delta x-4\right) \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Part D

f(x+1)f(x1)=[(x+1)24(x+1)][(x1)24(x1)]=[x2+2x+14x4][x22x+14x+4]=x2x2+2x4x+2x+4x+1414=4x8=4(x2)  (Answer)\begin{align*} f\left(x+1\right)-f\left(x-1\right) & =\left[\left(x+1\right)^2-4\left(x+1\right)\right]-\left[\left(x-1\right)^2-4\left(x-1\right)\right]\\ & = \left[x^2+2x+1-4x-4\right]-\left[x^2-2x+1-4x+4\right]\\ & =x^2-x^2+2x-4x+2x+4x+1-4-1-4\\ & =4x-8\\ & =4\left(x-2\right) \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements