Tag Archives: Engineering Mechanics: Statics 14th Edition Complete Solution Manual

Hibbeler Statics 14E P2.4 – Components of a Force Along Two Non-Perpendicular Axes


The vertical force F\textbf{F} acts downward at A on the two-membered frame. Determine the magnitudes of the two components of F\textbf{F} directed along the axes of AB and AC. Set F\textbf{F} = 500 N.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-4


Solution:

Draw the components of the force using the parallelogram law. Then the triangulation rule.

Parallelogram Law
Triangulation Rule

Solving for FAC using sine law.

FACsin 45=500 Nsin 75FAC=500 N sin45sin 75FAC=366.0254 NFAC366 N\begin{align*} \frac{\text{F}_\text{AC}}{\sin \ 45^\circ } & =\frac{500 \ \text{N}}{\sin \ 75^\circ }\\ \text{F}_\text{AC} & = \frac{500 \ \text{N} \ \sin45^\circ }{\sin\ 75^\circ }\\ \text{F}_\text{AC} & =366.0254 \ \text{N}\\ \text{F}_\text{AC} &\approx 366 \ \text{N} \end{align*}

Solve for FAB using sine law.

FABsin 60=500 Nsin 75FAB=500 N sin60sin 75FAB=448.2877 NFAB448 N\begin{align*} \frac{\text{F}_\text{AB}}{\sin \ 60^\circ } & =\frac{500 \ \text{N}}{\sin \ 75^\circ }\\ \text{F}_\text{AB} & = \frac{500 \ \text{N} \ \sin60^\circ }{\sin\ 75^\circ }\\ \text{F}_\text{AB} & =448.2877 \ \text{N}\\ \text{F}_\text{AB} &\approx 448 \ \text{N} \end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P2.2 — Solving for an Unknown Force Given the Magnitude and Direction of a Resultant and Another Force


If the magnitude of the resultant force is to be 500 N, directed along the positive y-axis, determine the magnitude of force F and its direction θ \theta .

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-2


Solution:

The parallelogram law and the triangulation rule are shown in the figures below.

Engineering Mechanics by RC Hibbeler Problem 2.2 Parallelogram Law
Parallelogram Law
Engineering Mechanics by RC Hibbeler Problem 2.2 Triangulation Rule
Triangulation Rule

Considering the figure of the triangulation rule, we can solve for the magnitude of F \textbf{F} using the cosine law.

F=7002+50022(700)(500)cos105=959.78 N=960 N\begin{align*} \textbf{F} & = \sqrt{700^2+500^2-2\left( 700 \right)\left( 500 \right)\cos105^{\circ}}\\ & = 959.78 \ \text{N}\\ & = 960 \ \text{N}\\ \end{align*}

Then we use the sine law to solve for the angle θ\theta.

sin(90θ)700=sin105959.78sin(90θ)=700sin105959.7890θ=sin1(700sin105959.78)θ=90sin1(700sin105959.78)θ=9044.79θ=45.2\begin{align*} \frac{\sin \left(90^{\circ}-\theta \right)}{700} & = \frac{\sin 105^{\circ}}{959.78}\\ \sin \left(90^{\circ}-\theta \right) & =\frac{700 \sin 105^{\circ }}{959.78}\\ 90^{\circ}-\theta & = \sin^{-1} \left( \frac{700 \sin 105^{\circ }}{959.78} \right)\\ \theta & = 90^\circ-\sin^{-1} \left( \frac{700 \sin 105^{\circ }}{959.78} \right) \\ \theta & = 90^\circ-44.79^\circ\\ \theta & = 45.2^\circ\\ \end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P2.1 — Solving for the Magnitude and Direction of the Resultant of Two Coplanar-Concurrent Forces


If θ=60°\theta = 60 \degree and F=450 N \textbf{F} = 450 \ \text{N}, determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-1


Solution:

The parallelogram law and the triangulation rule are shown in the figures below.

(a) Parallelogram Law
(b) Triangulation Rule

Considering figure (b), we can solve for the magnitude of FR \textbf{F}_R using the cosine law.

FR=7002+45022(700)(450)cos45=497.01 N=497 N\begin{align*} \textbf{F}_R & = \sqrt{700^2+450^2-2\left( 700 \right)\left( 450 \right)\cos45^{\circ}}\\ & = 497.01 \ \text{N}\\ & = 497 \ \text{N} \end{align*}

Then we use the sine law to solve for the interior angle θ\theta.

sinθ700=sin45497.01sinθ=700 sin45497.01θ=sin1(700 sin45497.01)This is an ambiguous case θ=84.81 or θ=95.19\begin{align*} \frac{\sin \theta}{700} & = \frac{\sin 45^{\circ}}{497.01}\\ \sin \theta & =\frac{700\ \sin 45^{\circ }}{497.01}\\ \theta & = \sin^{-1} \left( \frac{700\ \sin 45^{\circ }}{497.01} \right)\\ & \text{This is an ambiguous case }\\ \theta & = 84.81^\circ \ or \ \theta =95.19^\circ \\ \end{align*}

In here, the correct angle measurement is θ=95.19 \theta = 95.19^{\circ}.

Thus, the direction angle ϕ \phi of FR \textbf{F}_R measured counterclockwise from the positive x-axis, is

ϕ=θ+60=95.19+60=155\begin{align*} \phi & = \theta +60^\circ \\ & = 95.19^\circ +60^\circ \\ & = 155^\circ \end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.19 — Determine the Weight of the Column with a given Density


A concrete column has a diameter of 350 mm and a length of 2 m. If the density (mass/volume) of concrete is 2.45 Mg/m3, determine the weight of the column in pounds.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-19


Solution:

The density of any material is given by the formula

density=massvolume\text{density}=\frac{\text{mass}}{\text{volume}}

From there, we can compute for the mass as

mass=density×volume\text{mass}=\text{density} \times \text{volume}

We can solve for mass by multiplying density by volume. The density is already given, and we can compute for the volume of the concrete column by the formula of a volume of a cylinder.

V=πr2h=π(0.35 m2)2(2 m)=0.1924 m3\begin{align*} \text{V} & = \pi \text{r}^2 \text{h}\\ & =\pi \left( \frac{0.35\ \text{m}}{2} \right)^2 \left( 2 \ \text{m} \right)\\ & =0.1924 \ \text{m}^3 \end{align*}
Concrete Column illustration with diameter of 350 mm or 0.35 m, and a height of 2 m

Therefore, the mass of the concrete column is

mass=density×volume=(2.45×103 kg/m3)×(0.1924 m3)=471.44 kg\begin{align*} \text{mass} & =\text{density} \times \text{volume}\\ & = \left( 2.45 \times 10^3 \ \text{kg/m}^3 \right)\times \left( 0.1924 \ \text{m}^3 \right)\\ & =471.44 \ \text{kg}\\ \end{align*}

Now, we can solve for the weight by multiplying the mass by the acceleration due to gravity, g.

Weight=mass×acceleration due to gravity=471.44 kg×9.81 m/s2=4624.78 N\begin{align*} \text{Weight} & = \text{mass} \times \text{acceleration due to gravity} \\ & = 471.44 \ \text{kg} \times 9.81 \ \text{m/s}^2 \\ & = 4624.78 \ \text{N} \end{align*}

Finally, we can convert the weight in Newtons to weight in pounds.

4624.78 N=4624.78 N×1 lb4.4482 N=1039.70 lb=1.04×103 lb=1.04 kip\begin{align*} 4624.78\ \text{N} & = 4624.78\ \text{N}\times \frac{1\ \text{lb}}{4.4482\ \text{N}}\\ & = 1039.70\ \text{lb}\\ & = 1.04\times 10^3 \ \text{lb}\\ & = 1.04 \ \text{kip} \end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.14 — Evaluation of expression to correct SI Units


Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) (212 mN)2, (b) (52800 ms)2, and (c) [548(106)]1/2 ms.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-14


Solution:

Part A

(212 mN)2=[212×103 N]2=0.0449 N2=4.49×102 N2\begin{align*} \left( 212 \ \text{mN} \right)^2 & = \left[ 212\times 10^{-3} \ \text{N} \right]^2 \\ & = 0.0449 \ \text{N}^2 \\ & = 4.49\times 10^{-2} \ \text{N}^2\\ \end{align*}

Part B

(52800 ms)2=[52800×103 s]2=2788 s2=2.79×103 s2\begin{align*} \left( 52800 \ \text{ms} \right)^2 & = \left[ 52800\times 10^{-3} \ \text{s} \right]^2 \\ & =2788 \ \text{s}^2 \\ & = 2.79 \times 10^3 \ \text{s}^2 \end{align*}

Part C

[548(106)]1/2 ms=23409 ms=23409×103 s=23.4×103×103 s=23.4 s\begin{align*} \left[ 548\left( 10^6 \right) \right]^{1/2} \ \text{ms}& =23409 \ \text{ms}\\ & =23409\times 10^{-3}\ \text{s}\\ & = 23.4\times 10^3\times 10^{-3} \ \text{s}\\ & = 23.4 \ \text{s} \end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.13 — Conversion of Density from Slug per Cubic Foot to Appropriate SI Unit


The density (mass volume) of aluminum is 5.26 slug/ft3. Determine its density in SI units. Use an appropriate prefix.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-13


Solution:

5.26 slug/ft3=(5.26 slugft3)(1 ft0.3048 m)3(14.59 kg1 slug)=2710 kg/m3=2.71×103 kg/m3=2.71 Mg/m3\begin{align*} 5.26 \ \text{slug/ft}^3 & =\left( \frac{5.26 \ \text{slug}}{\text{ft}^3} \right)\left( \frac{1 \ \text{ft}}{0.3048\ \text{m}} \right)^3\left( \frac{14.59\ \text{kg}}{1\ \text{slug}} \right)\\ & = 2710\ \text{kg/m}^3\\ & = 2.71\times 10^3 \ \text{kg/m}^3\\ & = 2.71\ \text{Mg/m}^3 \end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.12 — Evaluation of Expression to Three Significant Figures with Appropriate SI Units


Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) (684 µm)/(43 ms), (b) (28 ms)(0.0458 Mm)/(348 mg), (c) (2.68 mm)(426 Mg).

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-12


Solution:

Part A

(684 μm)/43 ms=684×106 m43×103 s=15.9×103 ms=15.9 mm/s\begin{align*} \left( 684 \ \mu\text{m} \right)/43 \ \text{ms} & =\frac{684\times 10^{-6} \ \text{m}}{43\times 10^{-3} \ \text{s}}\\ & = \frac{15.9\times 10^{-3}\ \text{m}}{\text{s}}\\ & = 15.9 \ \text{mm/s} \end{align*}

Part B

(28 ms)(0.0458 Mm)/(348 mg)=[28×103 s][45.8×103×106 m]348×103×103 kg=3.69×106 mskg=3.69 Mms/kg\begin{align*} \left( 28 \ \text{ms} \right)\left( 0.0458 \ \text{Mm} \right)/\left( 348 \ \text{mg} \right) & = \frac{\left[ 28\times 10^{-3} \ \text{s} \right]\left[ 45.8\times 10^{-3}\times 10^6 \ \text{m} \right]}{348\times 10^{-3}\times 10^{-3} \ \text{kg}} \\ & = \frac{3.69\times 10^6 \ \text{m}\cdot \text{s}}{\text{kg}}\\ & = 3.69 \ \text{Mm}\cdot \text{s}/\text{kg}\\ \end{align*}

Part C

(2.68 mm)(426 Mg)=[2.68×103 m][426×103 kg]=1.14×103 mkg=1.14 kmkg\begin{align*} \left( 2.68 \ \text{mm} \right)\left( 426 \ \text{Mg} \right) & = \left[ 2.68\times 10^{-3} \ \text{m} \right]\left[ 426\times 10^3 \ \text{kg} \right]\\ & = 1.14\times 10^3 \ \text{m}\cdot \text{kg}\\ & = 1.14 \ \text{km}\cdot \text{kg}\\ \end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.3 — Representing a combination of units in the correct SI form


Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) Mg/ms, (b) N/mm, and (c) mN/(kgµs).

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-3


Solution:

Part A

Mg/ms=103 kg103 s=106kg/s=Gg/s\begin{align*} \text{Mg/ms} & = \frac{10^3 \ \text{kg}}{10^{-3} \ \text{s}} \\ & = 10^6 \text{kg/s}\\ & = \text{Gg/s} \end{align*}

Part B

N/mm=1 N103 m=103 N/m=kN/m\begin{align*} \text{N/mm} & = \frac{1\ \text{N}}{10^{-3} \ \text{m}}\\ & = 10^3 \ \text{N/m}\\ & = \text{kN/m} \end{align*}

Part C

mN(kgμs)=103 N106 kgs=103 N/(kgs)=kN/(kgs)\begin{align*} \frac{\text{mN}}{\left( \text{kg} \cdot \mu \text{s} \right)} & = \frac{10^{-3} \ \text{N}}{10^{-6} \ \text{kg} \cdot \text{s}}\\ & =10^3 \ \text{N}/\left( \text{kg} \cdot \text{s} \right)\\ & = \text{kN}/\left( \text{kg} \cdot \text{s}\right) \end{align*}

Advertisements

Statics 3.6 – Equilibrium of Truss Members Connected to a Gusset Plate | Hibbeler 14th Edition


The gusset plate is subjected to the forces of three members. Determine the tension force in member C and its angle θ for equilibrium. The forces are concurrent at point O. Take F=8 kN.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler Problem 3-5 Equilibrium of Truss Members Connected in a Gusset Plate

Continue reading

Statics 3.5 – Equilibrium of Truss Members Connected to a Gusset Plate | Hibbeler 14th Edition


The members of a truss are connected to the gusset plate. If the forces are concurrent at point O, determine the magnitudes of F and T for equilibrium. Take θ=90°.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler Problem 3-5 Equilibrium of Truss Members Connected in a Gusset Plate

Solution:

We need to find the angle that force T makes with the positive x-axis first. We call this the angle beta, β. This is depicted in the free-body diagram.

Free-body diagram:

Solving for the values of angles α and β.

tanα=34α=tan134α=36.8699°\begin{aligned} \tan \alpha & = \dfrac{3}{4} \\ \alpha & = \tan ^{-1} \frac{3}{4} \\ \alpha & = 36.8699 \degree \\ \end{aligned}

Knowing that the sum of angles α and β is 90°, we can solve for the β.

α+β=90°β=90°αβ=90°36.8699°β=53.1301°\begin{aligned} \alpha + \beta & = 90\degree \\ \beta & = 90 \degree - \alpha \\ \beta & = 90 \degree - 36.8699 \degree \\ \beta & = 53.1301 \degree \end{aligned}

Equations of Equilibrium:

Summation of forces in the x-direction:

+Fx=0Tcosβ45F=0Tcos53.1301°45F=0(1)\begin{aligned} \xrightarrow{+} \sum F_x & = 0 \\ T \cos \beta - \frac{4}{5} F & = 0 \\ T \cos 53.1301 \degree - \frac{4}{5} F & = 0 & & \qquad \qquad (1)\\ \end{aligned}

Summation of forces in the y-direction:

+Fy=0935FTsinβ=0Tsin53.1301°+35F=9(2)\begin{aligned} +\uparrow \sum F_y & =0 \\ 9 - \frac{3}{5} F- T \sin \beta & = 0 \\ T \sin 53.1301 \degree + \frac{3}{5}F & = 9 & & \qquad \qquad(2)\\ \end{aligned}

Now, we have two equations with two unknowns. We shall solve the unknowns by solving these equations simultaneously. We can use our calculator, or we can solve this manually using the method of substitution.

Using equation (1), solve for T in terms of F.

Tcos53.1301°45F=0Tcos53.1301°=45FT=45Fcos53.1301°(3)\begin{aligned} T \cos 53.1301\degree-\frac{4}{5} F & = 0 \\ T \cos 53.1301\degree & = \frac{4}{5} F \\ T & = \dfrac{\frac{4}{5}F}{\cos 53.1301\degree} \qquad \qquad (3)\\ \end{aligned}

Now, substitute this equation (3) to equation (2) to solve for F:

Tsin53.1301°+35F=9(45Fcos53.1301°)sin53.1301°+35F=945F(sin53.1301°cos53.1301°)+35F=945Ftan53.1301°+35F=9F(45tan53.1301°+35)=9F=945tan53.1301°+35F=5.4 kN\begin{aligned} T \sin 53.1301 \degree + \frac{3}{5}F & = 9 \\ \left(\dfrac{\frac{4}{5}F}{\cos 53.1301\degree} \right) \sin 53.1301 \degree + \frac{3}{5}F & = 9 \\ \frac{4}{5}F \left( \dfrac{\sin 53.1301\degree}{\cos 53.1301\degree}\right)+ \frac{3}{5}F & = 9 \\ \frac{4}{5}F \tan 53.1301\degree+\frac{3}{5}F &=9 \\ F\left( \frac{4}{5} \cdot \tan 53.1301\degree +\frac{3}{5}\right) & = 9\\ F & = \dfrac{9}{\frac{4}{5} \cdot \tan 53.1301\degree +\frac{3}{5}} \\ F & = 5.4 \ \text{kN} \\ \end{aligned}

Substitute the value of F to equation (3) to solve for T:

T=45Fcos53.1301°T=45(5.4 kN)cos53.1301°T=7.2 kN\begin{aligned} T & = \dfrac{\frac{4}{5}F}{\cos 53.1301\degree} \\ T & = \dfrac{\frac{4}{5} \cdot \left( 5.4 \ \text{kN}\right)}{\cos 53.1301\degree} \\ T & = 7.2 \ \text{kN} \end{aligned}

Therefore, F=5.4 kN F = 5.4 \ \text{kN} and T=7.2 kN T= 7.2 \ \text{kN} .