Tag Archives: engineering mechanics statics

Hibbeler Statics 14E P2.4 – Components of a Force Along Two Non-Perpendicular Axes


The vertical force \textbf{F} acts downward at A on the two-membered frame. Determine the magnitudes of the two components of \textbf{F} directed along the axes of AB and AC. Set \textbf{F} = 500 N.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-4


Solution:

Draw the components of the force using the parallelogram law. Then the triangulation rule.

Parallelogram Law
Triangulation Rule

Solving for FAC using sine law.

\begin{align*}
\frac{\text{F}_\text{AC}}{\sin \ 45^\circ } & =\frac{500 \ \text{N}}{\sin \ 75^\circ }\\
\text{F}_\text{AC} & = \frac{500 \ \text{N} \ \sin45^\circ }{\sin\ 75^\circ }\\
\text{F}_\text{AC} & =366.0254 \ \text{N}\\
\text{F}_\text{AC} &\approx 366 \ \text{N}
\end{align*}

Solve for FAB using sine law.

\begin{align*}
\frac{\text{F}_\text{AB}}{\sin \ 60^\circ } & =\frac{500 \ \text{N}}{\sin \ 75^\circ }\\
\text{F}_\text{AB} & = \frac{500 \ \text{N} \ \sin60^\circ }{\sin\ 75^\circ }\\
\text{F}_\text{AB} & =448.2877 \ \text{N}\\
\text{F}_\text{AB} &\approx 448 \ \text{N}
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P2.1 — Solving for the Magnitude and Direction of the Resultant of Two Coplanar-Concurrent Forces


If \theta = 60 \degree and \textbf{F} = 450 \ \text{N}, determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-1


Solution:

The parallelogram law and the triangulation rule are shown in the figures below.

(a) Parallelogram Law
(b) Triangulation Rule

Considering figure (b), we can solve for the magnitude of \textbf{F}_R using the cosine law.

\begin{align*}
\textbf{F}_R & = \sqrt{700^2+450^2-2\left( 700 \right)\left( 450 \right)\cos45^{\circ}}\\
& = 497.01 \ \text{N}\\
& = 497 \ \text{N}
\end{align*}

Then we use the sine law to solve for the interior angle \theta.

\begin{align*}
\frac{\sin \theta}{700} & = \frac{\sin 45^{\circ}}{497.01}\\
\sin \theta & =\frac{700\ \sin 45^{\circ }}{497.01}\\
\theta & = \sin^{-1} \left( \frac{700\ \sin 45^{\circ }}{497.01} \right)\\
& \text{This is an ambiguous case }\\
\theta & = 84.81^\circ \  or \  \theta =95.19^\circ \\
\end{align*}

In here, the correct angle measurement is \theta = 95.19^{\circ}.

Thus, the direction angle \phi of \textbf{F}_R measured counterclockwise from the positive x-axis, is

\begin{align*}
\phi & = \theta +60^\circ \\
& = 95.19^\circ +60^\circ \\
& = 155^\circ 
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.19 — Determine the Weight of the Column with a given Density


A concrete column has a diameter of 350 mm and a length of 2 m. If the density (mass/volume) of concrete is 2.45 Mg/m3, determine the weight of the column in pounds.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-19


Solution:

The density of any material is given by the formula

\text{density}=\frac{\text{mass}}{\text{volume}}

From there, we can compute for the mass as

\text{mass}=\text{density} \times \text{volume}

We can solve for mass by multiplying density by volume. The density is already given, and we can compute for the volume of the concrete column by the formula of a volume of a cylinder.

\begin{align*}
\text{V} & = \pi \text{r}^2 \text{h}\\
& =\pi \left( \frac{0.35\ \text{m}}{2} \right)^2 \left( 2 \ \text{m} \right)\\
& =0.1924 \ \text{m}^3
\end{align*}
Concrete Column illustration with diameter of 350 mm or 0.35 m, and a height of 2 m

Therefore, the mass of the concrete column is

\begin{align*}
\text{mass} & =\text{density} \times \text{volume}\\
& = \left( 2.45 \times 10^3 \ \text{kg/m}^3 \right)\times \left( 0.1924 \ \text{m}^3 \right)\\
& =471.44 \ \text{kg}\\
\end{align*}

Now, we can solve for the weight by multiplying the mass by the acceleration due to gravity, g.

\begin{align*}
\text{Weight} & = \text{mass} \times \text{acceleration due to gravity} \\
& = 471.44 \ \text{kg} \times 9.81 \ \text{m/s}^2 \\
& = 4624.78 \ \text{N}
\end{align*}

Finally, we can convert the weight in Newtons to weight in pounds.

\begin{align*}
4624.78\ \text{N} & = 4624.78\ \text{N}\times \frac{1\ \text{lb}}{4.4482\ \text{N}}\\
& = 1039.70\ \text{lb}\\
& = 1.04\times 10^3 \  \text{lb}\\
& = 1.04 \ \text{kip}
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P1.14 — Evaluation of expression to correct SI Units


Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) (212 mN)2, (b) (52800 ms)2, and (c) [548(106)]1/2 ms.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-14


Solution:

Part A

\begin{align*}
\left( 212 \ \text{mN} \right)^2 & = \left[ 212\times 10^{-3} \ \text{N} \right]^2 \\
& = 0.0449 \ \text{N}^2 \\
& = 4.49\times 10^{-2} \ \text{N}^2\\
\end{align*}

Part B

\begin{align*}
\left( 52800 \ \text{ms} \right)^2 & = \left[ 52800\times 10^{-3} \ \text{s} \right]^2 \\
& =2788 \ \text{s}^2 \\
& = 2.79 \times 10^3 \ \text{s}^2
\end{align*}

Part C

\begin{align*}
\left[ 548\left( 10^6 \right) \right]^{1/2} \ \text{ms}& =23409 \ \text{ms}\\
& =23409\times 10^{-3}\ \text{s}\\
& = 23.4\times 10^3\times 10^{-3} \ \text{s}\\
& = 23.4 \ \text{s}
\end{align*} 

Advertisements
Advertisements

Hibbeler Statics 14E P2.2 — Resultant of a System of Two Forces


Determine the magnitude of the resultant force \textbf{F}_{\text{R}} = \textbf{F}_1 + \textbf{F}_2 and its direction, measured counterclockwise from the positive x axis. 

Engineering Mechanics: Statics figure for Problem 2-3

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 2-1
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-3


SOLUTION:

The parallelogram law of the force system is shown.

Consider the triangle AOB.

Using cosine law to solve for the resultant force \textbf{F}_{\text{R}}

\begin{align*}
\textbf{F}_\text{R} & =\sqrt{\left(250\right)^2+\left(375\right)^2-2\left(250\right)\left(375\right) \cos\:75^{\circ} }\\
& =393.2 \ \text{lb}\\
& =393\:\text{lb}\\
\end{align*}

The value of angle θ can be solved using sine law. 

\begin{align*}
\frac{393.2}{\sin\:\left(75^{\circ} \right)} & = \frac{250}{\sin\:\theta } \\
\sin \theta & = \frac{250 \ \sin75 \degree}{393.2}\\
\theta & =\sin^{-1} \left(\frac{250 \ \sin75 \degree}{393.2}\right)\\
\theta & = 37.89^{\circ}\\
\end{align*}

Solve for the unknown angle \phi .

\phi =360^{\circ} -45^{\circ} +37.89^{\circ} =353^{\circ} 

The resultant force has a magnitude of 393 lb and is located 353º measured counterclockwise from the positive x-axis.


Advertisements
Advertisements

Computing the mass and weight of a man on earth and on the moon


If a man weighs 155 lb on earth, specify (a) his mass in slugs, (b) his mass in kilograms, and (c) his weight in newtons. If the man is on the moon, where the acceleration due to gravity is gm=5.30 ft/s², determine (d) his weight in pounds, and (e) his mass in kilograms.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-21
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-20


Solution:

Part A

From the formula, \text{W}=\text{mg}, we can solve for the mass by dividing the weight by the acceleration due to gravity. That is

\begin{align*}
\text{m} & = \frac{\text{W}}{\textbf{g}}\\
& = \frac{155\ \text{lb}}{32.2 \ \text{ft/s}^2}\\
& = 4.81 \ \text{slug}\\
\end{align*}

Part B

Convert the slug to kilograms, knowing that 1 slug = 14.59 kg.

\begin{align*}
\begin{align*}
\text{m} & = \left( \frac{155}{32.2} \text{slug}\right)\left( \frac{14.59 \ \text{kg}}{1 \ \text{kg}} \right)\\
& = 70.2 \ \text{kg}\\
\end{align*}
\end{align*}

Part C

Convert the 155 lb to newtons using 1 lb = 4.448 N.

\begin{align*}
\textbf{W} & = 155 \ \text{lb}\times \frac{4.448 \ \text{N}}{1 \ \text{lb}}\\
& = 689 \ \text{N}\\
\end{align*}

Part D

Using the same formulas, but now \textbf{g}=5.30 \ \text{ft/s}^2.

\textbf{W}=155\left(\frac{5.30}{32.2}\right)=25.5\:\text{lb}

Part E

\textbf{m}=155\left(\frac{14.59\:\text{kg}}{32.2}\right)=70.2\:\text{kg}

Advertisements
Advertisements

The force of gravity acting between two particles


Two particles have a mass of 8 kg and 12 kg, respectively. If they are 800 mm apart, determine the force of gravity acting between them. Compare this result with the weight of each particle.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-20
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-21


Solution:

The force of gravity acting between them:

\begin{align*}
\textbf{F} & =\textbf{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =66.73\left(10^{-12}\right) \text{m}^3/ \left( \text{kg} \cdot \text{s}^2 \right)   \left[\frac{8 \  \text{kg} \left(12\ \text{kg}\right)}{\left(0.8\ \text{m} \right)^2}\right]\\
&=10\left(10^{-9}\right)\ \text{N}\\
& =10.0 \ \text{nN}\\
\end{align*}

The weight of the 8 kg particle

\textbf{W}_1=8\left(9.81\right)=78.5\:\text{N}

Weight of the 12 kg particle

\textbf{W}_2=12\left(9.81\right)=118\:\text{N}

Advertisements
Advertisements

Expressing the Density of Water in SI Units


Water has a density of 1.94 slug/ft³. What is the density expressed in SI units? Express the answer to three significant figures.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-19
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-17


Solution:

\begin{align*}
\rho _w & =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =999.6\:\frac{\text{kg}}{\text{m}^3}\\
& =1.00\:\text{Mg/m}^3\\
\end{align*}

Advertisements
Advertisements

Showing How an Equation is Dimensionally Homogeneous


Using the SI system of units, show that Eq. 1–2 is a dimensionally homogeneous equation which gives F in newtons. Determine to three significant figures the gravitational force acting between two spheres that are touching each other. The mass of each sphere is 200 kg and the radius is 300 mm.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-18
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-15


Solution:

To prove that F is in Newtons, we have

\begin{align*}
\text{F} & =\text{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =\left(\frac{\text{m}^3}{\text{kg}\cdot \text{s}^2}\right)\left(\frac{\text{kg}\cdot \text{kg}}{\text{m}^2}\right)\\
& =\frac{\text{kg}\cdot \text{m}}{\text{s}^2}\\
& =\text{N}
\end{align*}

Now, if we substitute the given values into the equation

\begin{align*}
\text{F} & = 66.73\left(10^{-12}\right)\left[\frac{200\left(200\right)}{0.6^2}\right]\\
& = 7.41\left(10^{-6}\right) \text{N}\\
& =7.41\ \mu  \text{N}\\
\end{align*}

Advertisements
Advertisements

Evaluation of Expressions to SI Units with Appropriate Prefix


Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) 354 mg (45 km)/(0.0356 kN), (b) (0.00453 Mg)(201 ms), and (c) 435 MN/23.2 mm.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-11
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-18


Solution:

Part A

\begin{align*}
\frac{\left(354\:\text{mg}\right)\left(45\:\text{km}\right)}{0.0356\:\text{kN}} & = \frac{\left[354\left(10^{-3}\right)\:\text{g}\right]\left[45\left(10^3\right)\:\text{m}\right]}{0.0356\:\left(10^3\right)\:\text{N}}\\
& = \frac{0.447\:\left(10^3\right)\text{g}\cdot \text{m}}{\text{N}}\\
& = 0.447\:\text{kg}\cdot \text{m/N}
\end{align*}

Part B

\begin{align*}
\left(0.00453\:\text{Mg}\right)\left(201\:\text{ms}\right) & =\left[4.53\left(10^{-3}\right)\left(10^3\right)\text{kg}\right]\left[201\:\left(10^{-3}\right)\text{s}\right]\\
& =0.911\:\text{kg}\cdot \text{s}\\
\end{align*}

Part C

\begin{align*}
435\:\text{MN}/23.2\:\text{mm} & =\frac{435\:\left(10^6\right)\:\text{N}}{23.2\:\left(10^{-3}\right)\:\text{m}}\\
& = \frac{18.75\left(10^9\right)\:\text{N}}{\text{m}}\\
& =18.8\:\text{GN/m}
\end{align*}

Advertisements
Advertisements