Tag Archives: Engineering Mechanics: Statics and Dynamics 13th Edition by RC Hibbeler Solution Manual

Electrical Transmission Towers Background for Force Vectors Statics of Rigid Bodies

Chapter 2: Force Vectors

Vector Addition of Forces

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Addition of a System of Coplanar Forces

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

Cartesian Vectors | Addition of Cartesian Vectors

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Problem 65

Problem 66

Problem 67

Problem 68

Problem 69

Problem 70

Problem 71

Problem 72

Problem 73

Problem 74

Problem 75

Problem 76

Problem 77

Problem 78

Problem 79

Problem 80

Problem 81

Problem 82

Problem 83

Problem 84

Problem 85

Force Vector Directed Along a Line

Problem 86

Problem 87

Problem 88

Problem 89

Problem 90

Problem 91

Problem 92

Problem 93

Problem 94

Problem 95

Problem 96

Problem 97

Problem 98

Problem 99

Problem 100

Problem 101

Problem 102

Problem 103

Problem 104

Problem 105

Dot Product

Problem 106

Problem 107

Problem 108

Problem 109

Problem 110

Problem 111

Problem 112

Problem 113

Problem 114

Problem 115

Problem 116

Problem 117

Problem 118

Problem 119

Problem 120

Problem 121

Problem 122

Problem 123

Problem 124

Problem 125

Problem 126

Problem 127

Problem 128

Problem 129

Problem 130

Problem 131

Problem 132

Problem 133

Problem 134

Problem 135

Problem 136

Problem 137

Problem 138

Problem 139


Purchase Complete Solution Manual of Engineering Mechanics: Statics 14th Edition by RC Hibbeler


You can complete your purchase even if you do not have a Paypal account. Just click on the appropriate card on the buttons below.

For concerns, please send an email to [email protected]

Engineering Mechanics: Statics 14th Edition by RC Hibbeler

Engineering Mechanics: Statics 14th Edition by RC Hibbeler Solution Manual by Engineering-Math.org

This is a PDF copy of the complete guide to the problems and exercises of the book Mechanics: Statics 14th Edition by RC Hibbeler. Expect the copy to be sent to your email address within 24 hours. If you have not heard from us within 24 hours, kindly send us a message to [email protected]

$49.00


Looking for another material? Kindly send us an email and we will get back to you within 24 hours.


General Principles of Statics of Rigid Bodies Fourteenth Edition by RC Hibbeler Cover Photo

Chapter 1: General Principles


Advertisements
Advertisements

Hibbeler Statics 14E P2.2 — Resultant of a System of Two Forces


Determine the magnitude of the resultant force \textbf{F}_{\text{R}} = \textbf{F}_1 + \textbf{F}_2 and its direction, measured counterclockwise from the positive x axis. 

Engineering Mechanics: Statics figure for Problem 2-3

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 2-1
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-3


SOLUTION:

The parallelogram law of the force system is shown.

Consider the triangle AOB.

Using cosine law to solve for the resultant force \textbf{F}_{\text{R}}

\begin{align*}
\textbf{F}_\text{R} & =\sqrt{\left(250\right)^2+\left(375\right)^2-2\left(250\right)\left(375\right) \cos\:75^{\circ} }\\
& =393.2 \ \text{lb}\\
& =393\:\text{lb}\\
\end{align*}

The value of angle θ can be solved using sine law. 

\begin{align*}
\frac{393.2}{\sin\:\left(75^{\circ} \right)} & = \frac{250}{\sin\:\theta } \\
\sin \theta & = \frac{250 \ \sin75 \degree}{393.2}\\
\theta & =\sin^{-1} \left(\frac{250 \ \sin75 \degree}{393.2}\right)\\
\theta & = 37.89^{\circ}\\
\end{align*}

Solve for the unknown angle \phi .

\phi =360^{\circ} -45^{\circ} +37.89^{\circ} =353^{\circ} 

The resultant force has a magnitude of 393 lb and is located 353º measured counterclockwise from the positive x-axis.


Advertisements
Advertisements

Computing the mass and weight of a man on earth and on the moon


If a man weighs 155 lb on earth, specify (a) his mass in slugs, (b) his mass in kilograms, and (c) his weight in newtons. If the man is on the moon, where the acceleration due to gravity is gm=5.30 ft/s², determine (d) his weight in pounds, and (e) his mass in kilograms.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-21
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-20


Solution:

Part A

From the formula, \text{W}=\text{mg}, we can solve for the mass by dividing the weight by the acceleration due to gravity. That is

\begin{align*}
\text{m} & = \frac{\text{W}}{\textbf{g}}\\
& = \frac{155\ \text{lb}}{32.2 \ \text{ft/s}^2}\\
& = 4.81 \ \text{slug}\\
\end{align*}

Part B

Convert the slug to kilograms, knowing that 1 slug = 14.59 kg.

\begin{align*}
\begin{align*}
\text{m} & = \left( \frac{155}{32.2} \text{slug}\right)\left( \frac{14.59 \ \text{kg}}{1 \ \text{kg}} \right)\\
& = 70.2 \ \text{kg}\\
\end{align*}
\end{align*}

Part C

Convert the 155 lb to newtons using 1 lb = 4.448 N.

\begin{align*}
\textbf{W} & = 155 \ \text{lb}\times \frac{4.448 \ \text{N}}{1 \ \text{lb}}\\
& = 689 \ \text{N}\\
\end{align*}

Part D

Using the same formulas, but now \textbf{g}=5.30 \ \text{ft/s}^2.

\textbf{W}=155\left(\frac{5.30}{32.2}\right)=25.5\:\text{lb}

Part E

\textbf{m}=155\left(\frac{14.59\:\text{kg}}{32.2}\right)=70.2\:\text{kg}

Advertisements
Advertisements

The force of gravity acting between two particles


Two particles have a mass of 8 kg and 12 kg, respectively. If they are 800 mm apart, determine the force of gravity acting between them. Compare this result with the weight of each particle.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-20
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-21


Solution:

The force of gravity acting between them:

\begin{align*}
\textbf{F} & =\textbf{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =66.73\left(10^{-12}\right) \text{m}^3/ \left( \text{kg} \cdot \text{s}^2 \right)   \left[\frac{8 \  \text{kg} \left(12\ \text{kg}\right)}{\left(0.8\ \text{m} \right)^2}\right]\\
&=10\left(10^{-9}\right)\ \text{N}\\
& =10.0 \ \text{nN}\\
\end{align*}

The weight of the 8 kg particle

\textbf{W}_1=8\left(9.81\right)=78.5\:\text{N}

Weight of the 12 kg particle

\textbf{W}_2=12\left(9.81\right)=118\:\text{N}

Advertisements
Advertisements

Expressing the Density of Water in SI Units


Water has a density of 1.94 slug/ft³. What is the density expressed in SI units? Express the answer to three significant figures.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-19
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-17


Solution:

\begin{align*}
\rho _w & =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =999.6\:\frac{\text{kg}}{\text{m}^3}\\
& =1.00\:\text{Mg/m}^3\\
\end{align*}

Advertisements
Advertisements

Showing How an Equation is Dimensionally Homogeneous


Using the SI system of units, show that Eq. 1–2 is a dimensionally homogeneous equation which gives F in newtons. Determine to three significant figures the gravitational force acting between two spheres that are touching each other. The mass of each sphere is 200 kg and the radius is 300 mm.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-18
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-15


Solution:

To prove that F is in Newtons, we have

\begin{align*}
\text{F} & =\text{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =\left(\frac{\text{m}^3}{\text{kg}\cdot \text{s}^2}\right)\left(\frac{\text{kg}\cdot \text{kg}}{\text{m}^2}\right)\\
& =\frac{\text{kg}\cdot \text{m}}{\text{s}^2}\\
& =\text{N}
\end{align*}

Now, if we substitute the given values into the equation

\begin{align*}
\text{F} & = 66.73\left(10^{-12}\right)\left[\frac{200\left(200\right)}{0.6^2}\right]\\
& = 7.41\left(10^{-6}\right) \text{N}\\
& =7.41\ \mu  \text{N}\\
\end{align*}

Advertisements
Advertisements

Problem 1-17| General Principles| Engineering Mechanics: Statics| RC Hibbeler

If an object has a mass of 40 slugs, determine its mass in kilograms.

Continue reading

Problem 1-16| General Principles| Engineering Mechanics: Statics| RC Hibbeler

What is the weight in newtons of an object that has a mass of: (a) 10 kg, (b) 0.5 g, and (c) 4.50 Mg? Express the result to three significant figures. Use an appropriate prefix.

Continue reading