PROBLEM:
Evaluate \displaystyle \lim\limits_{x\to 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4\:}\right).
A straight substitution of x=4 leads to the indeterminate form \frac{0}{0} which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows:
\begin{align*} \\ \lim\limits_{x\to 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4}\right)& =\lim\limits_{x\to 4}\left(\frac{\frac{4-x}{4x}}{x-4}\right)\\ \\ & =\lim\limits_{x\to 4}\frac{4-x}{4x\left(x-4\right)}\\ \\ &=\lim\limits_{x\to 4}\left(\frac{4-x}{-4x\left(4-x\right)}\right)\\ \\ & =\lim\limits_{x\to 4}-\frac{1}{4x}\\ \\ & =-\frac{1}{4\cdot 4}\\ \\ & =-\frac{1}{16} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}
You must be logged in to post a comment.