Tag Archives: Feliciano and Uy

Header Photos for Elementary Differential Equations Chapter 9 Special Second Ordered Equations

Chapter 9: Special Second-Ordered Equations


Supplementary Problems

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6


Advertisements
Advertisements

Purchase Textbook: Differential and Integral Calculus by Feliciano and Uy


You can buy the textbook even without any PayPal account. Click on the appropriate card on the buttons below.

For concerns, email [email protected]

Book-Cover-for-Engineering-Math.Org_

Differential and Integral Calculus by Feliciano and Uy PDF Textbook

This is a PDF copy of the book Differential and Integral Calculus by Feliciano and Uy. Expect the copy to be sent to your email address within 24 hours. If you have not heard from us within 24 hours, kindly send us a message to [email protected]

₱100.00


Looking for another material? Kindly send us an email and we will get back to you within 24 hours.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 65


A graph of v(t) is shown for a world-class track sprinter in a 100-m race. (See Figure 2.67). (a) What is his average velocity for the first 4 s? (b) What is his instantaneous velocity at t=5 s? (c) What is his average acceleration between 0 and 4 s? (d) What is his time for the race?

A graph of  v(t)  is shown for a world-class track sprinter in a 100-m race.
Figure 2.67

Solution:

Part A

To find the average velocity over the straight line graph of the velocity vs time shown, we just need to locate the midpoint of the line. In this case, the average speed for the first 4 seconds is

v_{\text{ave}}=6\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

Looking at the graph, the velocity at exactly 5 seconds is 12 m/s.

Part C

If we are given the velocity-time graph, we can solve for the acceleration by solving for the slope of the line.

Consider the line from time zero to time, t=4 seconds. The slope, or acceleration, is

a=\text{slope}=\frac{12\:\text{m/s}-0\:\text{m/s}}{4\:\text{s}}=3\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part D

For the first 4 seconds, the distance traveled is equal to the area under the curve.

\text{distance}=\frac{1}{2}\left(4\:\sec \right)\left(12\:\text{m/s}\right)=24\:\text{m}

So, the sprinter traveled a total of 24 meters in the first 4 seconds. He still needs to travel a distance of 76 meters to cover the total racing distance. At the constant rate of 12 m/s, he can run the remaining distance by

\text{t}=\frac{\text{distance}}{\text{velocity}}=\frac{76\:\text{m}}{12\:\text{m/s}}=6.3\:\sec

Therefore, the total time of the sprint is

\text{t}_{\text{total}}=4\:\sec +6.3\:\sec =10.3\:\sec \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 5

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \infty }\left(\frac{8x-5}{\sqrt{4x^2+3}}\right)


Advertisements

SOLUTION:

Divide by the highest denominator power

\begin{align*}

\displaystyle \lim\limits_{x\to \infty }\left(\displaystyle \frac{8x-5}{\sqrt{4x^2+3}}\right) & =\displaystyle \lim\limits_{x\to \infty }\left(\displaystyle \frac{8x-5}{\sqrt{4x^2+3}}\cdot \displaystyle \frac{\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x}}\right) \\
\\

& =\displaystyle \lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{8x}{x}-\displaystyle \frac{5}{x}}{\sqrt{\displaystyle \frac{4x^2}{x^2}+\displaystyle \frac{3}{x^2}}}\right)\\
\\
& =\displaystyle \lim\limits_{x\to \infty }\left(\displaystyle \frac{8-\displaystyle \frac{5}{x}}{\displaystyle \sqrt{4+\displaystyle \frac{3}{x^2}}}\right) \\

\\
& =\displaystyle \frac{8-0}{\sqrt{4+0}} \\
\\
& =\displaystyle \frac{8}{2} \\
\\
& =\displaystyle 4 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 4

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \infty }\left(\frac{x^3+x+2}{x^2-1}\right)


Advertisements

Solution:

Divide by the highest denominator power

\begin{align*}

\lim\limits_{x\to \infty }\left(\displaystyle \frac{x^3+x+2}{x^2-1}\right) & =\lim\limits_{x\to \infty }\left(\displaystyle \frac{x^3+x+2}{x^2-1}\cdot \displaystyle \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right) \\
\\
&=\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{x^3}{x^3}+\displaystyle \frac{x}{x^3}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{x^2}{x^3}-\displaystyle \frac{1}{x^3}}\right)\\
\\
&=\lim\limits_{x\to \infty }\left(\displaystyle \frac{1+\displaystyle \frac{1}{x^2}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{1}{x}-\displaystyle \frac{1}{x^3}}\right)\\
\\
&=\displaystyle \frac{1+0+0}{0-0}\\
\\
&=\infty \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 3

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \infty }\left(\frac{4x+5}{x^2+1}\right)


Advertisements

Solution:

Divide by the highest denominator power

\begin{align*}
\lim\limits_{x\to \infty }\left(\frac{4x+5}{x^2+1}\right) & =\lim\limits_{x\to \infty }\left(\frac{4x+5}{x^2+1}\cdot \frac{\displaystyle\frac{1}{x^2}}{\displaystyle\frac{1}{x^2}}\right) \\
\\
&=\lim\limits_{x\to \infty }\left(\frac{\displaystyle\frac{4x}{x^2}+\displaystyle\frac{5}{x^2}}{\displaystyle\frac{x^2}{x^2}+\displaystyle\frac{1}{x^2}}\right)\\
\\
&=\lim\limits_{x\to \infty }\left(\frac{\displaystyle\frac{4}{x}+\displaystyle\frac{5}{x^2}}{1+\displaystyle\frac{1}{x^2}}\right) \\
\\
&=\displaystyle\frac{0+0}{1+0} \\
\\
&=0 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 2

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\right)


Advertisements

Solution:

Divide by the highest denominator power.

\begin{align*}

\displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\right) & =\displaystyle \lim\limits_{x\to \infty }\left(\frac{3x^2+x+2}{x^3+8x+1}\cdot \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right)\\
\\
&=\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{3x^2}{x^3}+\displaystyle \frac{x}{x^3}+\displaystyle \frac{2}{x^3}}{\displaystyle \frac{x^3}{x^3}+\frac{8x}{x^3}+\frac{1}{x^3}}\right)\\
\\
& =\lim\limits_{x\to \infty }\left(\displaystyle \frac{\displaystyle \frac{3}{x}+\frac{1}{x^2}+\displaystyle \frac{2}{x^3}}{1+\displaystyle \frac{8}{x^2}+\frac{1}{x^3}}\right)\\
\\
&=\frac{0+0+0}{1+0+0} \\
\\
&=0\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.4, Problem 1

Advertisements

PROBLEM:

Evaluate \displaystyle \lim\limits_{x\to \infty }\left( \frac{6x^3+4x^2+5}{8x^3+7x-3}\right)


Advertisements

Solution:

Divide by the highest denominator power.

\begin{align*}
\displaystyle \lim\limits_{x\to \infty }\left(\frac{6x^3+4x^2+5}{8x^3+7x-3}\right)&=\displaystyle \lim\limits_{x\to \infty }\left(\frac{6x^3+4x^2+5}{8x^3+7x-3}\cdot \displaystyle \frac{\displaystyle \frac{1}{x^3}}{\displaystyle \frac{1}{x^3}}\right) \\
\\
& =\displaystyle \lim\limits_{x\to \infty \:}\left(\displaystyle \frac{6+\displaystyle \frac{4}{x}+\displaystyle \frac{5}{x^3}}{8+\displaystyle \frac{7}{x^2}-\frac{3}{x^3}}\right)\\
\\
& =\displaystyle \frac{\lim\limits_{x\to \infty \:}\left(6+\displaystyle \frac{4}{x}+\frac{5}{x^3}\right)}{\lim\limits_{x\to \infty \:}\left(8+\displaystyle\frac{7}{x^2}-\displaystyle \frac{3}{x^3}\right)}\\
\\
& =\displaystyle \frac{6+0+0}{8+0-0}\\
\\
& =\displaystyle \frac{6}{8}\\
\\
& =\displaystyle \frac{3}{4} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 22

Advertisements

PROBLEM:

If  \displaystyle f\left(x\right)=x^2-2x+3, find \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{f\left(x+2\right)-f\left(2\right)}{x}\right).


Advertisements

SOLUTION:

\begin{align*}
\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{f\left(x+2\right)-f\left(2\right)}{x}\right)&=\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)+3\right)-\left(2^2-2\cdot 2+3\right)}{x}\right)\\
\\
& =\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)+3\right)-\left(3\right)}{x}\right)\\
\\
&=\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\left(\left(x+2\right)^2-2\left(x+2\right)\right)}{x}\right)\\
\\
\end{align*}

Direct substitution of x=0 gives the indeterminate form \frac{0}{0}. Therefore, we proceed by factoring the numerator.

\begin{align*}
& =\displaystyle \lim\limits_{x\to 0}\displaystyle \frac{\left(x+2\right)\left(x+2-2\right)}{x}\\
\\
& =\lim\limits_{x\to 0}\frac{\left(x+2\right)\left(x\right)}{x} \\
\\
& =\lim\limits_{x\to 0}\left(x+2\right) \\
\\
& =0+2 \\
\\
& =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 21

Advertisements

PROBLEM:

If \displaystyle f\left(x\right)=x^2-2x+3, find \displaystyle \lim\limits_{x\to 2}\left(\frac{f\left(x\right)-f\left(2\right)}{x-2}\right).


Advertisements

SOLUTION:

\begin{align*}
\displaystyle \lim\limits_{x\to 2}\left(\displaystyle \frac{f\left(x\right)-f\left(2\right)}{x-2}\right) & =\lim\limits_{x\to 2}\left(\displaystyle \frac{\left(x^2-2x+3\right)-\left(2^2-2\cdot 2+3\right)}{x-2}\right) \\
\\
& =\lim\limits_{x\to 2}\left(\displaystyle \frac{\left(x^2-2x+3\right)-3}{x-2}\right)\\
\\
& =\lim\limits_{x\to 2}\left(\displaystyle \frac{x^2-2x}{x-2}\right)\\
\\

\end{align*}

Direct substitution of x=2 gives the indeterminate form \frac{0}{0}. Therefore, we proceed by factoring the numerator.

\begin{align*}
& =\lim\limits_{x\to 2}\left(\displaystyle \frac{x\left(x-2\right)}{x-2}\right) \\
\\
& =\lim\limits_{x\to 2}\left(x\right) \\
\\
& =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements