Tag Archives: Feliciano and Uy

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 2

Advertisements

PROBLEM:

Evaluate limx2(x2+2x83x6)\displaystyle \lim\limits_{x\to 2}\left(\frac{x^2+2x-8}{3x-6}\right)


Advertisements

SOLUTION:

A straight substitution of x=2x=2 leads to the indeterminate form 00\frac{0}{0}  which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx2(x2+2x83x6)=limx2((x+4)(x2)3(x2))=limx2(x+43)=2+43=63=2  (Answer)\begin{align*} \lim\limits_{x\to 2}\left(\frac{x^2+2x-8}{3x-6}\right)& =\lim\limits_{x\to 2}\left(\frac{\left(x+4\right)\left(x-2\right)}{3\left(x-2\right)}\right)\\ \\ &=\lim\limits_{x\to 2}\left(\frac{x+4}{3}\right)\\ \\ &=\frac{2+4}{3}\\ \\ &=\frac{6}{3}\\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 1

Advertisements

PROBLEM:

Evaluate limx4(x364x216)\displaystyle \lim\limits_{x\to 4}\left(\frac{x^3-64}{x^2-16}\right)


Advertisements

SOLUTION:

A straight substitution of x=4 x=4 leads to the indeterminate form 00 \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx4(x364x216)=limx4((x4)(x2+4x+16)(x+4)(x4))=limx4(x2+4x+16x+4)=(4)2+4(4)+164+4=488=6  (Answer)\begin{align*} \lim\limits_{x\to 4}\left(\frac{x^3-64}{x^2-16}\right)& =\lim\limits_{x\to 4}\left(\frac{\left(x-4\right)\left(x^2+4x+16\right)}{\left(x+4\right)\left(x-4\right)}\right)\\ \\ & =\lim\limits_{x\to 4}\left(\frac{x^2+4x+16}{x+4}\right)\\ \\ & =\frac{\left(4\right)^2+4\left(4\right)+16}{4+4}\\ \\ & =\frac{48}{8}\\ \\ & =6 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 8

Advertisements

PROBLEM:

Evaluate limx0(3x+2x22x+4)\displaystyle \lim\limits_{x\to 0}\left(\frac{3x+2}{x^2-2x+4}\right).


Advertisements

SOLUTION:

Plug in the value x=0.

limx0(3x+2x22x+4)=3(0)+2(0)22(0)+4=0+200+4=24=12  (Answer)\begin{align*} \lim\limits_{x\to 0}\left(\frac{3x+2}{x^2-2x+4}\right)& =\frac{3\left(0\right)+2}{\left(0\right)^2-2\left(0\right)+4}\\ \\ & =\frac{0+2}{0-0+4}\\ \\ & =\frac{2}{4}\\ \\ & =\frac{1}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 7

Advertisements

PROBLEM:

Evaluate limx3(3xxx+1)\displaystyle \lim\limits_{x\to 3}\left(\frac{\sqrt{3x}}{x\sqrt{x+1}}\right).


Advertisements

SOLUTION:

Plug the value x=3.

limx3(3xxx+1)=3(3)33+1=934=332=36=12  (Answer)\begin{align*} \lim\limits_{x\to 3}\left(\frac{\sqrt{3x}}{x\sqrt{x+1}}\right)&=\frac{\sqrt{3\left(3\right)}}{3\sqrt{3+1}} \\ \\ &=\frac{\sqrt{9}}{3\sqrt{4}} \\ \\ & =\frac{3}{3\cdot 2}\\ \\ & =\frac{3}{6}\\ \\ &=\frac{1}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 6

Advertisements

PROBLEM:

Evaluate limx2(4x3)(x2+5)\displaystyle \lim_{x\to 2}\left(4x-3\right)\left(x^2+5\right).


Advertisements

SOLUTION:

Plug the value x=2.

limx2(4x3)(x2+5)=[(42)3][(2)2+5]=[83][4+5]=(5)(9)=45  (Answer)\begin{align*} \lim\limits_{x\to 2}\left(4x-3\right)\left(x^2+5\right) & =\left[\left(4\cdot 2\right)-3\right]\left[\left(2\right)^2+5\right]\\ & =\left[8-3\right]\left[4+5\right]\\ & =\left(5\right)\left(9\right)\\ & =45 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 5

Advertisements

PROBLEM:

Evaluate limx8(2x+x34)\displaystyle \lim\limits_{x\to 8}\left(2x+\sqrt[3]{x}-4\right).


Advertisements

SOLUTION:

Plug in the value x=8.

limx8(2x+x34)=[2(8)+834]=[16+24]=14  (Answer)\begin{align*} \lim\limits_{x\to 8}\left(2x+\sqrt[3]{x}-4\right) & = \left[2\left(8\right)+\sqrt[3]{8}-4\right]\\ & =\left[16+2-4\right]\\ & =14 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 4

Advertisements

PROBLEM:

Evaluate limxπ3(sin2xsinx)\displaystyle \lim\limits _{x\to \frac{\pi }{3}}\left(\frac{\sin\:2x}{\sin\:x}\right).


Advertisements

SOLUTION:

Plug in the value x=π3\displaystyle x=\frac{\pi }{3}.

limxπ3(sin2xsinx)=sin(2π3)sin(π3)=3232=1  (Answer)\begin{align*} \lim\limits_{x\to \frac{\pi }{3}}\left(\frac{\sin\:2x}{\sin\:x}\right) & =\frac{\sin\left(2\cdot \frac{\pi }{3}\right)}{\sin\:\left(\frac{\pi }{3}\right)} \\ & =\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}\\ & =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 3

Advertisements

PROBLEM:

Evaluate limxπ4(tanx+sinx)\displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right).


Advertisements

SOLUTION:

limxπ4(tanx+sinx)=limxπ4(tanx)+limxπ4(sinx)=tanπ4+sinπ4=1+22=2+22  (Answer)\begin{align*} \lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x\right)+\lim\limits_{x\to \frac{\pi }{4}}\left(\sin\:x\right)\\ & =\tan\:\frac{\pi }{4}+\sin\:\frac{\pi }{4}\\ & =1+\frac{\sqrt{2}}{2}\\ & =\frac{2+\sqrt{2}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements