Advertisements
PROBLEM:
Evaluate \displaystyle \lim\limits_{x\to 2}\left(\frac{x^2+2x-8}{3x-6}\right)
Advertisements
SOLUTION:
A straight substitution of x=2 leads to the indeterminate form \frac{0}{0} which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows
\begin{align*} \lim\limits_{x\to 2}\left(\frac{x^2+2x-8}{3x-6}\right)& =\lim\limits_{x\to 2}\left(\frac{\left(x+4\right)\left(x-2\right)}{3\left(x-2\right)}\right)\\ \\ &=\lim\limits_{x\to 2}\left(\frac{x+4}{3}\right)\\ \\ &=\frac{2+4}{3}\\ \\ &=\frac{6}{3}\\ \\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}
Advertisements
Advertisements
You must be logged in to post a comment.