Advertisements
Advertisements
PROBLEM:
If \displaystyle y=\frac{x^2+3}{x}, find x as a function of y.
Advertisements
Advertisements
SOLUTION:
\begin{align*} y & = \frac{x^2+3}{x} \\ xy & =x^2+3 \\ x^2-xy+3&=0 \end{align*}
Solve for x using the quadratic formula. We have a=1,\:b=-y,\:\text{and}\:c=3
\begin{align*} x & =\frac{-b\pm \sqrt{b^2-4ac}\:}{2a} \\ x & =\frac{ -\left(-y\right)\pm \sqrt{\left(-y\right)^2-4\left(1\right)\left(3\right)}}{2\left(1\right)} \\ x & =\frac{y\pm \sqrt{y^2-12}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Advertisements
Advertisements
You must be logged in to post a comment.