Tag Archives: Force and Motion

Solution Guides to College Physics by Openstax Chapter 6 Banner

Chapter 6: Uniform Circular Motion and Gravitation

Advertisements

Rotation Angle and Angular Velocity

Advertisements

Centripetal Acceleration

Problem 22

Advertisements

Centripetal Force

Problem 29

Problem 30

Problem 31

Problem 32

Advertisements

Newton’s Universal Law of Gravitation

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Advertisements

Satellites and Kepler’s Laws: An Argument for Simplicity

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Advertisements

Advertisements
Advertisements
Solution Guides to College Physics by Openstax Chapter 5 Banner

Chapter 5: Further Applications of Newton’s Laws: Friction, Drag, and Elasticity

Advertisements

Friction

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Advertisements

Drag Forces

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Advertisements

Elasticity: Stress and Strain

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Advertisements

Advertisements
Advertisements
Solution Guides to College Physics by Openstax Chapter 4 Banner

Chapter 4: Dynamics: Force and Newton’s Laws of Motion

Advertisements

Newton’s Second Law of Motion: Concept of a System

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Advertisements

Newton’s Third Law of Motion: Symmetry in Forces

Problem 15

Problem 16

Advertisements

Normal, Tension, and Other Example of Forces

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Advertisements

Problem Solving Strategies

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Advertisements

Further Applications of Newton’s Laws of Motion

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Advertisements

Further Applications of Newton’s Laws of Motion

Problem 52

Problem 53

Problem 54


Advertisements
Advertisements

Grantham PHY220 Week 2 Assignment Problem 8

If a car is traveling at 50 m/s and then stops over 300 meters (while sliding), what is the coefficient of kinetic friction between the tires of the car and the road?

SOLUTION:

Draw the free-body diagram of the car

week 2 problem 8

Consider the vertical direction

\sum F_y=ma_y

F_N-mg=0

F_N=mg

Consider the motion in the horizontal direction

Solve for the acceleration of the car.

v^2=\left(v_0\right)^2+2a_x\Delta x

a_x=\frac{v^2-\left(v_0\right)^2}{2\Delta x}=\frac{0-50^2}{2\left(300\right)}=-4.17\:m/s^2

Solve for the coefficient of kinetic friction

\sum F_x=ma_x

-F_{fr}=ma_x

-\mu _kF_N=ma_x

\mu _k=\frac{ma_x}{-F_N}=\frac{m\:\left(-4.17\right)}{-m\left(9.80\right)}=\frac{4.17}{9.80}

\mu _k=0.43

College Physics by Openstax Chapter 4 Problem 1


A 63.0-kg sprinter starts a race with an acceleration of 4.20 m/s2. What is the net external force on him?


Solution:

So, we are given mass, m = 63.0 \ \text{kg} , and acceleration, a = 4.20 \ \text{m/s}^2.

The net force has a formula 

\text{F}=\text{m}a

Substituting the given values, we have

\begin{align*}
F & = \left( 63.0 \ \text{kg} \right)\left( 4.20 \ \text{m/s}^2 \right) \\
F & = 265 \  \text{kg}\cdot \text{m/s}^2 \\
F & = 265 \ \text{N} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Advertisements
Advertisements