Tag Archives: force system

Statics 3.2 – Equilibrium of Truss Members that are Pin Connected | Hibbeler 14th Edition


The members of a truss are pin connected at joint O. Determine the magnitude of F1 and its angle θ for equilibrium. Set F2=6 kN.

Figure 3.1: Engineering Mechanics: Statics Equilibrium of Particle
Figure 3.1/3.2

Solution:

Free-body diagram:

Free-body-diagram-for-Problem-3.2 of Engineering Mechanics: Statics by Russell C. Hibbeler

Equations of Equilibrium:

The summation of forces in the x-direction:

\begin{aligned}
\sum F_x & = 0 &\\
6 \sin 70 \degree + F_1 \cos \theta - 5 \cos 30 \degree - \dfrac {4}{5} \left(7 \right) & = 0 & \\
 F_1 \cos \theta & = 4.2920 & (1)
\end{aligned}

The summation of forces in the y-direction:

\begin{aligned}
\sum F_y & =0 & \\
6 \cos 70 \degree+5 \sin 30 \degree - F_1 \sin \theta - \dfrac{3}{5} \left( 7 \right ) & =0 & \\
F_1 \sin \theta &=0.3521 & (2)\\
\end{aligned}

We came up with 2 equations with unknowns F_1 and \theta . To solve the equations simultaneously, we can use the method of substitution.

Using equation 1, solve for F_1 in terms of \theta .

\begin{aligned}
F_1 \cos \theta & = 4.2920  &\\
F_1 & =\dfrac{4.2920}{ \cos \theta } & (3) \\
\end{aligned}

Now, substitute this equation (3) to equation (2).

\begin{aligned}
F_1 \sin \theta & = 0.3521 \\
\left ( \dfrac {4.2920}{\cos \theta} \right) \sin \theta & =0.3521 \\
4.2920 \cdot \dfrac{\sin \theta}{\cos \theta} & = 0.3521 \\
4.2920 \tan \theta & = 0.3521 \\
\tan \theta & = \dfrac{0.3521}{4.2920} \\
\theta &= \tan ^{-1} \dfrac{0.3521}{4.2920} \\
\theta & = 4.69 \degree

\end{aligned}

Substitute the solved value of \theta to equation (3).

\begin{aligned}
F_1 & = \dfrac{4.2920}{\cos \theta} \\
F_1 &= \dfrac{4.2920}{\cos 4.69 \degree} \\
F_1 & = 4.31 \text{kN}
\end{aligned}

Therefore, the answers to the questions are:

\begin{aligned}
F_1= & \:4.31 \: \text {kN} \\
\theta = & \: 4.69 \degree
\end{aligned} 

Chapter 3: Equilibrium of a Particle

Coplanar Force Systems

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Three-Dimensional Force Systems

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Problem 65

Problem 66

Problem 67