Tag Archives: Force Vectors

Hibbeler Statics 14E P2.2 — Solving for an Unknown Force Given the Magnitude and Direction of a Resultant and Another Force


If the magnitude of the resultant force is to be 500 N, directed along the positive y-axis, determine the magnitude of force F and its direction \theta .

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-2


Solution:

The parallelogram law and the triangulation rule are shown in the figures below.

Engineering Mechanics by RC Hibbeler Problem 2.2 Parallelogram Law
Parallelogram Law
Engineering Mechanics by RC Hibbeler Problem 2.2 Triangulation Rule
Triangulation Rule

Considering the figure of the triangulation rule, we can solve for the magnitude of \textbf{F} using the cosine law.

\begin{align*}
\textbf{F} & = \sqrt{700^2+500^2-2\left( 700 \right)\left( 500 \right)\cos105^{\circ}}\\
& = 959.78 \  \text{N}\\
& = 960 \  \text{N}\\
\end{align*}

Then we use the sine law to solve for the angle \theta.

\begin{align*}
\frac{\sin \left(90^{\circ}-\theta \right)}{700} & = \frac{\sin 105^{\circ}}{959.78}\\
\sin \left(90^{\circ}-\theta \right) & =\frac{700 \sin 105^{\circ }}{959.78}\\
90^{\circ}-\theta & = \sin^{-1} \left( \frac{700 \sin 105^{\circ }}{959.78} \right)\\
\theta & = 90^\circ-\sin^{-1} \left( \frac{700 \sin 105^{\circ }}{959.78} \right) \\
\theta & =  90^\circ-44.79^\circ\\
\theta & =  45.2^\circ\\
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P2.1 — Solving for the Magnitude and Direction of the Resultant of Two Coplanar-Concurrent Forces


If \theta = 60 \degree and \textbf{F} = 450 \ \text{N}, determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-1


Solution:

The parallelogram law and the triangulation rule are shown in the figures below.

(a) Parallelogram Law
(b) Triangulation Rule

Considering figure (b), we can solve for the magnitude of \textbf{F}_R using the cosine law.

\begin{align*}
\textbf{F}_R & = \sqrt{700^2+450^2-2\left( 700 \right)\left( 450 \right)\cos45^{\circ}}\\
& = 497.01 \ \text{N}\\
& = 497 \ \text{N}
\end{align*}

Then we use the sine law to solve for the interior angle \theta.

\begin{align*}
\frac{\sin \theta}{700} & = \frac{\sin 45^{\circ}}{497.01}\\
\sin \theta & =\frac{700\ \sin 45^{\circ }}{497.01}\\
\theta & = \sin^{-1} \left( \frac{700\ \sin 45^{\circ }}{497.01} \right)\\
& \text{This is an ambiguous case }\\
\theta & = 84.81^\circ \  or \  \theta =95.19^\circ \\
\end{align*}

In here, the correct angle measurement is \theta = 95.19^{\circ}.

Thus, the direction angle \phi of \textbf{F}_R measured counterclockwise from the positive x-axis, is

\begin{align*}
\phi & = \theta +60^\circ \\
& = 95.19^\circ +60^\circ \\
& = 155^\circ 
\end{align*}

Advertisements
Advertisements
Electrical Transmission Towers Background for Force Vectors Statics of Rigid Bodies

Chapter 2: Force Vectors

Vector Addition of Forces

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Addition of a System of Coplanar Forces

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

Cartesian Vectors | Addition of Cartesian Vectors

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Problem 65

Problem 66

Problem 67

Problem 68

Problem 69

Problem 70

Problem 71

Problem 72

Problem 73

Problem 74

Problem 75

Problem 76

Problem 77

Problem 78

Problem 79

Problem 80

Problem 81

Problem 82

Problem 83

Problem 84

Problem 85

Force Vector Directed Along a Line

Problem 86

Problem 87

Problem 88

Problem 89

Problem 90

Problem 91

Problem 92

Problem 93

Problem 94

Problem 95

Problem 96

Problem 97

Problem 98

Problem 99

Problem 100

Problem 101

Problem 102

Problem 103

Problem 104

Problem 105

Dot Product

Problem 106

Problem 107

Problem 108

Problem 109

Problem 110

Problem 111

Problem 112

Problem 113

Problem 114

Problem 115

Problem 116

Problem 117

Problem 118

Problem 119

Problem 120

Problem 121

Problem 122

Problem 123

Problem 124

Problem 125

Problem 126

Problem 127

Problem 128

Problem 129

Problem 130

Problem 131

Problem 132

Problem 133

Problem 134

Problem 135

Problem 136

Problem 137

Problem 138

Problem 139


Hibbeler Statics 14E P2.2 — Resultant of a System of Two Forces


Determine the magnitude of the resultant force \textbf{F}_{\text{R}} = \textbf{F}_1 + \textbf{F}_2 and its direction, measured counterclockwise from the positive x axis. 

Engineering Mechanics: Statics figure for Problem 2-3

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 2-1
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-3


SOLUTION:

The parallelogram law of the force system is shown.

Consider the triangle AOB.

Using cosine law to solve for the resultant force \textbf{F}_{\text{R}}

\begin{align*}
\textbf{F}_\text{R} & =\sqrt{\left(250\right)^2+\left(375\right)^2-2\left(250\right)\left(375\right) \cos\:75^{\circ} }\\
& =393.2 \ \text{lb}\\
& =393\:\text{lb}\\
\end{align*}

The value of angle θ can be solved using sine law. 

\begin{align*}
\frac{393.2}{\sin\:\left(75^{\circ} \right)} & = \frac{250}{\sin\:\theta } \\
\sin \theta & = \frac{250 \ \sin75 \degree}{393.2}\\
\theta & =\sin^{-1} \left(\frac{250 \ \sin75 \degree}{393.2}\right)\\
\theta & = 37.89^{\circ}\\
\end{align*}

Solve for the unknown angle \phi .

\phi =360^{\circ} -45^{\circ} +37.89^{\circ} =353^{\circ} 

The resultant force has a magnitude of 393 lb and is located 353º measured counterclockwise from the positive x-axis.


Advertisements
Advertisements