If the magnitude of the resultant force is to be 500 N, directed along the positive y-axis, determine the magnitude of force F and its direction \theta .
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-2
Solution:
The parallelogram law and the triangulation rule are shown in the figures below.
Considering the figure of the triangulation rule, we can solve for the magnitude of \textbf{F} using the cosine law.
\begin{align*} \textbf{F} & = \sqrt{700^2+500^2-2\left( 700 \right)\left( 500 \right)\cos105^{\circ}}\\ & = 959.78 \ \text{N}\\ & = 960 \ \text{N}\\ \end{align*}
Then we use the sine law to solve for the angle \theta.
\begin{align*} \frac{\sin \left(90^{\circ}-\theta \right)}{700} & = \frac{\sin 105^{\circ}}{959.78}\\ \sin \left(90^{\circ}-\theta \right) & =\frac{700 \sin 105^{\circ }}{959.78}\\ 90^{\circ}-\theta & = \sin^{-1} \left( \frac{700 \sin 105^{\circ }}{959.78} \right)\\ \theta & = 90^\circ-\sin^{-1} \left( \frac{700 \sin 105^{\circ }}{959.78} \right) \\ \theta & = 90^\circ-44.79^\circ\\ \theta & = 45.2^\circ\\ \end{align*}
You must be logged in to post a comment.