Tag Archives: Friction

Solution Guides to College Physics by Openstax Chapter 5 Banner

Chapter 5: Further Applications of Newton’s Laws: Friction, Drag, and Elasticity

Advertisements

Friction

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Advertisements

Drag Forces

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Advertisements

Elasticity: Stress and Strain

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Advertisements

Advertisements
Advertisements

Grantham PHY220 Week 2 Assignment Problem 8

If a car is traveling at 50 m/s and then stops over 300 meters (while sliding), what is the coefficient of kinetic friction between the tires of the car and the road?

SOLUTION:

Draw the free-body diagram of the car

week 2 problem 8

Consider the vertical direction

\sum F_y=ma_y

F_N-mg=0

F_N=mg

Consider the motion in the horizontal direction

Solve for the acceleration of the car.

v^2=\left(v_0\right)^2+2a_x\Delta x

a_x=\frac{v^2-\left(v_0\right)^2}{2\Delta x}=\frac{0-50^2}{2\left(300\right)}=-4.17\:m/s^2

Solve for the coefficient of kinetic friction

\sum F_x=ma_x

-F_{fr}=ma_x

-\mu _kF_N=ma_x

\mu _k=\frac{ma_x}{-F_N}=\frac{m\:\left(-4.17\right)}{-m\left(9.80\right)}=\frac{4.17}{9.80}

\mu _k=0.43

College Physics by Openstax Chapter 5 Problem 1

A physics major is cooking breakfast when he notices that the frictional force between his steel spatula and his Teflon frying pan is only 0.200 N. Knowing the coefficient of kinetic friction between the two materials, he quickly calculates the normal force. What is it?


Solution:

The formula for friction is

f=\mu _{k\:}N

When we solve for the normal force, N, in terms of the other variables, we have

N=\frac{f}{\mu _k}

The coefficient of kinetic friction is 0.04. Therefore, the normal force is

\begin{align*}
N & =\frac{f}{\mu _k} \\
N & =\frac{0.200\:\text{newton}}{0.04} \\
N & =5.00\:\text{newton} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements