Tag Archives: Functions

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.1, Problem 8

Advertisements
Advertisements

PROBLEM:

If f(x)=x2+1\displaystyle f\left(x\right)=x^2+1, find f(x+h)f(x)h,h0\displaystyle \frac{f\left(x+h\right)-f\left(x\right)}{h},\:h\ne 0.


Advertisements
Advertisements

SOLUTION:

f(x+h)f(x)h=[(x+h)2+1](x2+1)h=x2+2xh+h2+1x21h=2xh+h2h=h(2x+h)h=2x+h  (Answer)\begin{align*} \displaystyle \frac{f\left(x+h\right)-f\left(x\right)}{h} & =\frac{\left[\left(x+h\right)^2+1\right]-\left(x^2+1\right)\:}{h}\\ \\ & =\frac{x^2+2xh+h^2+1-x^2-1}{h}\\ \\ & =\frac{2xh+h^2}{h}\\ \\ & =\frac{h\left(2x+h\right)}{h}\\ \\ & =2x+h \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\ \end{align*}

Advertisements
Advertisements