Tag Archives: General Principles

Problem 1-15| General Principles| Engineering Mechanics: Statics| RC Hibbeler

Determine the mass of an object that has a weight of (a) 20 mN, (b) 150 kN, and (c) 60 MN. Express the answer to three significant figures.

Continue reading

Problem 1-14| General Principles| Engineering Mechanics: Statics| RC Hibbeler

Evaluate each of the following and express with an appropriate prefix: (a) (430 kg) ², (b) (0.002 mg)², and (c) (230 m)³.

Continue reading

Problem 1-13| General Principles| Engineering Mechanics: Statics| RC Hibbeler

Convert each of the following to three significant figures: (a) 20 lb·ft to N·m, (b) 450 lb/ft³ to kN/m³, and (c) 15 ft/h to mm/s.
Continue reading

Problem 1-12| General Principles| Engineering Mechanics: Statics| RC Hibbeler

Convert each of the following and express the answer using an appropriate prefix: (a) 175 lb/ft³ to kN/m³, (b) 6 ft/h to mm/s, and (c) 835 lb·ft to kN·m. Continue reading

Evaluation of Expressions to SI Units with Appropriate Prefix


Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) 354 mg (45 km)/(0.0356 kN), (b) (0.00453 Mg)(201 ms), and (c) 435 MN/23.2 mm.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-11
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-18


Solution:

Part A

\begin{align*}
\frac{\left(354\:\text{mg}\right)\left(45\:\text{km}\right)}{0.0356\:\text{kN}} & = \frac{\left[354\left(10^{-3}\right)\:\text{g}\right]\left[45\left(10^3\right)\:\text{m}\right]}{0.0356\:\left(10^3\right)\:\text{N}}\\
& = \frac{0.447\:\left(10^3\right)\text{g}\cdot \text{m}}{\text{N}}\\
& = 0.447\:\text{kg}\cdot \text{m/N}
\end{align*}

Part B

\begin{align*}
\left(0.00453\:\text{Mg}\right)\left(201\:\text{ms}\right) & =\left[4.53\left(10^{-3}\right)\left(10^3\right)\text{kg}\right]\left[201\:\left(10^{-3}\right)\text{s}\right]\\
& =0.911\:\text{kg}\cdot \text{s}\\
\end{align*}

Part C

\begin{align*}
435\:\text{MN}/23.2\:\text{mm} & =\frac{435\:\left(10^6\right)\:\text{N}}{23.2\:\left(10^{-3}\right)\:\text{m}}\\
& = \frac{18.75\left(10^9\right)\:\text{N}}{\text{m}}\\
& =18.8\:\text{GN/m}
\end{align*}

Advertisements
Advertisements

Problem 1-9| General Principles| Engineering Mechanics: Statics| RC Hibbeler


A rocket has a mass of 250(10³) slugs on earth. Specify (a) its mass in SI units and (b) its weight in SI units. If the rocket is on the moon, where the acceleration due to gravity is g_m=5.30\:ft/s^2, determine to three significant figures (c) its weight in SI units and (d) its mass in SI units.


Solution:

a) 250\left(10^3\right)slugs=\left[250\left(10^3\right)\:slugs\right]\left(\frac{14.59\:kg}{1\:slug}\right)=3.6457\left(10^6\right)\:kg=3.65\:Gg

b) W_e=mg=\left[3.6475\left(10^6\right)kg\right]\left(9.81\:m/s^2\right)=35.792\left(10^6\right)kg\cdot m/s^2=35.8\:MN

c) W_m=mg_m=\left[250\left(10^3\right)slugs\right]\left(5.30\:ft/s^2\right)=\left[1.325\left(10^6\right)lb\right]\left(\frac{4.448\:N}{1\:lb}\right)=5.894\left(10^6\right)N=5.89\:MN

d) m_m=m_e=3.65\left(10^6\right)kg=3.65\:Gg


Problem 1-8| General Principles| Engineering Mechanics: Statics| RC Hibbeler


The specific weight (wt./vol.) of brass is 520 lb/ft³. Determine its density (mass/vol.) in SI units. Use an appropriate prefix. 


Solution:

First, we will convert 1 Pa to lb/ft².

520\:lb/ft^3=\left(\frac{520\:lb}{ft^3}\right)\left(\frac{1\:ft}{0.3048\:m}\right)^3\left(\frac{4.448\:N}{1\:lb}\right)\left(\frac{1\:kg}{9.81\:N}\right)=8.33\:Mg/m^3


Converting Measurement from Pounds Per Square Inch to Pascal


The pascal (Pa) is actually a very small unit of pressure. To show this, convert 1 Pa = 1N/m² to lb/ft². Atmospheric pressure at sea level is 14.7 lb/in². How many pascals is this?

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-7
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-16


Solution:

First, we will convert 1 Pa to lb/ft².

\begin{align*}
1\ \text{Pa} & =\frac{1\:\text{N}}{\text{m}^2}\left(\frac{1\:\text{lb}}{4.4482\:\text{N}}\right)\left(\frac{0.3048^2\:\text{m}^2}{1\:\text{ft}^2}\right)\\
&=20.9\left(10^{-3}\right)\:\text{lb/ft}^2
\end{align*}

Next, we convert 14.7 lb/in2 to Pa

\begin{align*}
14.7 \ \text{lb/in}^2 & =\frac{14.7\:\text{lb}}{\text{in}^2}\left(\frac{4.448\:\text{N}}{1\:\text{lb}}\right)\left(\frac{144\:\text{in}^2}{1\:\text{ft}^2}\right)\left(\frac{1\:\text{ft}^2}{0.3048^2\:\text{m}^2}\right)\\
& =101.3\left(10^3\right)\:\text{N/m}^2\\
& =101.3\left(10^3\right) \text{Pa}\\
\end{align*}

Advertisements
Advertisements

Problem 1-6| General Principles| Engineering Mechanics: Statics| RC Hibbeler


If a car is traveling at 55 mi/h, determine its speed in kilometers per hour and meters per second.


Solution:

First, convert 55 mi/h to km/h. 

55\:\frac{mi}{h}=\left(\frac{55\:mi}{1\:h}\right)\left(\frac{5280\:ft}{1\:mi}\right)\left(\frac{0.3048\:m}{1\:ft}\right)\left(\frac{1\:km}{1000\:m}\right)=88.5\:\frac{km}{h}

Next. we convert 88.5 km/h to m/s.

88.5\:\frac{km}{h}=\left(\frac{88.5\:km}{1\:h}\right)\left(\frac{1000\:m}{1\:km}\right)\left(\frac{1\:h}{3600\:s}\right)=24.6\:\frac{m}{s}


Representing combinations of units in correct SI Form


Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) 0.000431 kg, (b) 35.3(10³) N, and (c) 0.00532 km.

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-7


Solution:

Part A

\begin{align*}
0.000 \ 431 \ \text{kg} & = 0.431 \times 10^{-3} \ \text{kg}\\
& = 0.431\times 10^{-3} \times 10^3 \ \text{g} \\
& = 0.431 \ \text{g}
\end{align*}

Part B

\begin{align*}
35.3\left( 10^3 \right) \ \text{N} & = 35.3 \ \text{kN}
\end{align*}

Part C

\begin{align*}
0.00532 \ \text{km} & = 0.00532 \times 10^3 \ \text{m} \\
& = 5.32 \times 10^{-3} \times 10^3 \ \text{m} \\
& = 5.32 \ \text{m}
\end{align*}