Find the following for path B in Figure 3.52:
(a) The total distance traveled, and
(b) The magnitude and direction of the displacement from start to finish.
Solution:
Part A
The total distance traveled is
\begin{align*} \text{d} & = \left(4 \times 120 \text{m} \right) + \left(3 \times 120\ \text{m} \right) + \left(3 \times 120\ \text{m} \right) \\ \text{d} & = 1 200\ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}\\ \end{align*}
Part B
The magnitude of the displacement is
\begin{align*} \text{s} & = \sqrt{\left( s_x \right)^2+\left( s_y \right)^2} \\ \text{s} & = \sqrt{\left( 1 \times 120\ \text{m} \right)^2+ \left( 3 \times 120 \ \text{m} \right)^2} \\ \text{s} & = \sqrt{\left( 120\ \text{m} \right)^2+ \left( 360 \ \text{m} \right)^2} \\ \text{s} & = 379 \ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)} \end{align*}
The direction is
\begin{align*} \theta & = \arctan \left( \frac{s_y}{s_x} \right) \\ \theta & = \arctan \left( \frac{360\ \text{m}}{120\ \text{m}} \right) \\ \theta & = 71.6^\circ , \ \text{N of E} \ \qquad {\color{DarkOrange} \left( \text{Answer} \right)}\\ \end{align*}
You must be logged in to post a comment.