Tag Archives: Hibbeler

Statics 3.2 – Equilibrium of Truss Members that are Pin Connected | Hibbeler 14th Edition


The members of a truss are pin connected at joint O. Determine the magnitude of F1 and its angle θ for equilibrium. Set F2=6 kN.

Figure 3.1: Engineering Mechanics: Statics Equilibrium of Particle
Figure 3.1/3.2

Solution:

Free-body diagram:

Free-body-diagram-for-Problem-3.2 of Engineering Mechanics: Statics by Russell C. Hibbeler

Equations of Equilibrium:

The summation of forces in the x-direction:

\begin{aligned}
\sum F_x & = 0 &\\
6 \sin 70 \degree + F_1 \cos \theta - 5 \cos 30 \degree - \dfrac {4}{5} \left(7 \right) & = 0 & \\
 F_1 \cos \theta & = 4.2920 & (1)
\end{aligned}

The summation of forces in the y-direction:

\begin{aligned}
\sum F_y & =0 & \\
6 \cos 70 \degree+5 \sin 30 \degree - F_1 \sin \theta - \dfrac{3}{5} \left( 7 \right ) & =0 & \\
F_1 \sin \theta &=0.3521 & (2)\\
\end{aligned}

We came up with 2 equations with unknowns F_1 and \theta . To solve the equations simultaneously, we can use the method of substitution.

Using equation 1, solve for F_1 in terms of \theta .

\begin{aligned}
F_1 \cos \theta & = 4.2920  &\\
F_1 & =\dfrac{4.2920}{ \cos \theta } & (3) \\
\end{aligned}

Now, substitute this equation (3) to equation (2).

\begin{aligned}
F_1 \sin \theta & = 0.3521 \\
\left ( \dfrac {4.2920}{\cos \theta} \right) \sin \theta & =0.3521 \\
4.2920 \cdot \dfrac{\sin \theta}{\cos \theta} & = 0.3521 \\
4.2920 \tan \theta & = 0.3521 \\
\tan \theta & = \dfrac{0.3521}{4.2920} \\
\theta &= \tan ^{-1} \dfrac{0.3521}{4.2920} \\
\theta & = 4.69 \degree

\end{aligned}

Substitute the solved value of \theta to equation (3).

\begin{aligned}
F_1 & = \dfrac{4.2920}{\cos \theta} \\
F_1 &= \dfrac{4.2920}{\cos 4.69 \degree} \\
F_1 & = 4.31 \text{kN}
\end{aligned}

Therefore, the answers to the questions are:

\begin{aligned}
F_1= & \:4.31 \: \text {kN} \\
\theta = & \: 4.69 \degree
\end{aligned} 

Statics 3.1 – Equilibrium of Truss Members in Pin Connection | Hibbeler 14th Edition


The members of a truss are pin connected at joint O. Determine the magnitudes of F1 and F2 for equilibrium. Set θ=60.

Figure 3.1: Engineering Mechanics: Statics Equilibrium of Particle
Figure 3.1

Solution:

Free-body diagram:

Free-Body Diagram for Problem 3.1 of Engineering Mechanics: Statics 14th Edition by Russell C. Hibbeler

Equations of Equilibrium:

Take the sum of horizontal forces considering forces to the right positive, and equate to zero.

\begin {aligned}


\sum{F}_x &= 0 & \\

F_1 \cos{60 \degree}+F_2 \sin{70 \degree}-5\cos{30 \degree}-\dfrac{4}{5}\left(7\right) &= 0 &\\

0.5F_1+0.9397F_2&=9.9301 &(1)\\

\end {aligned}

Take the sum of vertical forces considering upward forces positive, and equate to zero.

\begin{aligned}

\sum F_y&=0 &\\

-F_1\sin60\degree+F_2\cos70\degree+5\sin30\degree-\dfrac{3}{5}\left(7\right)&=0 &\\

-0.8660F_1+0.3420F_2&=1.7 &(2)\\

\end{aligned}

Now, we have two equations with two unknowns F_1 and F_2 . So, we have a system of two equations. We can solve this using algebra, or we can directly use our calculator with this capability. The answers are

F_1=1.83 \: \text{kN}\\
F_2=9.60 \: \text{kN}

Chapter 3: Equilibrium of a Particle

Coplanar Force Systems

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Three-Dimensional Force Systems

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Problem 65

Problem 66

Problem 67


Hibbeler Statics 14E P2.2 — Resultant of a System of Two Forces


Determine the magnitude of the resultant force \textbf{F}_{\text{R}} = \textbf{F}_1 + \textbf{F}_2 and its direction, measured counterclockwise from the positive x axis. 

Engineering Mechanics: Statics figure for Problem 2-3

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 2-1
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-3


SOLUTION:

The parallelogram law of the force system is shown.

Consider the triangle AOB.

Using cosine law to solve for the resultant force \textbf{F}_{\text{R}}

\begin{align*}
\textbf{F}_\text{R} & =\sqrt{\left(250\right)^2+\left(375\right)^2-2\left(250\right)\left(375\right) \cos\:75^{\circ} }\\
& =393.2 \ \text{lb}\\
& =393\:\text{lb}\\
\end{align*}

The value of angle θ can be solved using sine law. 

\begin{align*}
\frac{393.2}{\sin\:\left(75^{\circ} \right)} & = \frac{250}{\sin\:\theta } \\
\sin \theta & = \frac{250 \ \sin75 \degree}{393.2}\\
\theta & =\sin^{-1} \left(\frac{250 \ \sin75 \degree}{393.2}\right)\\
\theta & = 37.89^{\circ}\\
\end{align*}

Solve for the unknown angle \phi .

\phi =360^{\circ} -45^{\circ} +37.89^{\circ} =353^{\circ} 

The resultant force has a magnitude of 393 lb and is located 353º measured counterclockwise from the positive x-axis.


Advertisements
Advertisements

Computing the mass and weight of a man on earth and on the moon


If a man weighs 155 lb on earth, specify (a) his mass in slugs, (b) his mass in kilograms, and (c) his weight in newtons. If the man is on the moon, where the acceleration due to gravity is gm=5.30 ft/s², determine (d) his weight in pounds, and (e) his mass in kilograms.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-21
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-20


Solution:

Part A

From the formula, \text{W}=\text{mg}, we can solve for the mass by dividing the weight by the acceleration due to gravity. That is

\begin{align*}
\text{m} & = \frac{\text{W}}{\textbf{g}}\\
& = \frac{155\ \text{lb}}{32.2 \ \text{ft/s}^2}\\
& = 4.81 \ \text{slug}\\
\end{align*}

Part B

Convert the slug to kilograms, knowing that 1 slug = 14.59 kg.

\begin{align*}
\begin{align*}
\text{m} & = \left( \frac{155}{32.2} \text{slug}\right)\left( \frac{14.59 \ \text{kg}}{1 \ \text{kg}} \right)\\
& = 70.2 \ \text{kg}\\
\end{align*}
\end{align*}

Part C

Convert the 155 lb to newtons using 1 lb = 4.448 N.

\begin{align*}
\textbf{W} & = 155 \ \text{lb}\times \frac{4.448 \ \text{N}}{1 \ \text{lb}}\\
& = 689 \ \text{N}\\
\end{align*}

Part D

Using the same formulas, but now \textbf{g}=5.30 \ \text{ft/s}^2.

\textbf{W}=155\left(\frac{5.30}{32.2}\right)=25.5\:\text{lb}

Part E

\textbf{m}=155\left(\frac{14.59\:\text{kg}}{32.2}\right)=70.2\:\text{kg}

Advertisements
Advertisements

The force of gravity acting between two particles


Two particles have a mass of 8 kg and 12 kg, respectively. If they are 800 mm apart, determine the force of gravity acting between them. Compare this result with the weight of each particle.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-20
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-21


Solution:

The force of gravity acting between them:

\begin{align*}
\textbf{F} & =\textbf{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =66.73\left(10^{-12}\right) \text{m}^3/ \left( \text{kg} \cdot \text{s}^2 \right)   \left[\frac{8 \  \text{kg} \left(12\ \text{kg}\right)}{\left(0.8\ \text{m} \right)^2}\right]\\
&=10\left(10^{-9}\right)\ \text{N}\\
& =10.0 \ \text{nN}\\
\end{align*}

The weight of the 8 kg particle

\textbf{W}_1=8\left(9.81\right)=78.5\:\text{N}

Weight of the 12 kg particle

\textbf{W}_2=12\left(9.81\right)=118\:\text{N}

Advertisements
Advertisements

Expressing the Density of Water in SI Units


Water has a density of 1.94 slug/ft³. What is the density expressed in SI units? Express the answer to three significant figures.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-19
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-17


Solution:

\begin{align*}
\rho _w & =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =999.6\:\frac{\text{kg}}{\text{m}^3}\\
& =1.00\:\text{Mg/m}^3\\
\end{align*}

Advertisements
Advertisements

Engineering Mechanics: Statics 14th Edition by RC Hibbeler Solution Manual

You can purchase the complete solution manual of the Engineering Mechanics: Statics 14th Edition by Russell Hibbeler in this page.


Equilibrium of a Rigid Body: Statics of Rigid Bodies 14th Edition by RC Hibbeler

Equilibrium of a Rigid Body

Structural Analysis: Statics of Rigid Bodies 14th Edition by RC Hibbeler

Structural Analysis

Internal Forces: Statics of Rigid Bodies 14th Edition by RC Hibbeler

Internal Forces

Friction: Statics of Rigid Bodies 14th Edition by RC Hibbeler

Friction

Center of Gravity and Centroid: Statics of Rigid Bodies 14th Edition by RC Hibbeler

Center of Gravity and Centroid

Moment of Inertia: Statics of Rigid Bodies 14th Edition by RC Hibbeler

Moment of Inertia

Virtual Work: Statics of Rigid Bodies 14th Edition by RC Hibbeler

Virtual Work


Advertisements
Advertisements

Evaluation of Expressions to SI Units with Appropriate Prefix


Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) 354 mg (45 km)/(0.0356 kN), (b) (0.00453 Mg)(201 ms), and (c) 435 MN/23.2 mm.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-11
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-18


Solution:

Part A

\begin{align*}
\frac{\left(354\:\text{mg}\right)\left(45\:\text{km}\right)}{0.0356\:\text{kN}} & = \frac{\left[354\left(10^{-3}\right)\:\text{g}\right]\left[45\left(10^3\right)\:\text{m}\right]}{0.0356\:\left(10^3\right)\:\text{N}}\\
& = \frac{0.447\:\left(10^3\right)\text{g}\cdot \text{m}}{\text{N}}\\
& = 0.447\:\text{kg}\cdot \text{m/N}
\end{align*}

Part B

\begin{align*}
\left(0.00453\:\text{Mg}\right)\left(201\:\text{ms}\right) & =\left[4.53\left(10^{-3}\right)\left(10^3\right)\text{kg}\right]\left[201\:\left(10^{-3}\right)\text{s}\right]\\
& =0.911\:\text{kg}\cdot \text{s}\\
\end{align*}

Part C

\begin{align*}
435\:\text{MN}/23.2\:\text{mm} & =\frac{435\:\left(10^6\right)\:\text{N}}{23.2\:\left(10^{-3}\right)\:\text{m}}\\
& = \frac{18.75\left(10^9\right)\:\text{N}}{\text{m}}\\
& =18.8\:\text{GN/m}
\end{align*}

Advertisements
Advertisements

Problem 1-2|Stress | Mechanics of Materials| Ninth Edition| R.C. Hibbeler|

Determine the resultant internal normal and shear force in the member at (a) section a–a and (b) section b–b, each of which passes through point A. The 500-lb load is applied along the centroidal axis of the member.

Problem 1-2

Continue reading