Tag Archives: hydrologic principles

Hydrology and Floodplain Analysis by Bedient et.al. Chapter 1 Problem 7


Clear Lake has a surface area of 708,000 m2 (70.8 ha.). For a given month, the lake has an inflow of 1.5 m3/s and an outflow of 1.25 m3/s. A +1.0-m storage change or increase in lake level was recorded. If a precipitation gage recorded a total of 24 cm for this month, determine the evaporation loss (in cm) for the lake. Assume that seepage loss is negligible.


Solution:

We are given the following values:

\begin{align*}
\text{Area}, \ A&=708,000 \ \text{m}^2 \\
\text{Inflow}, \ I&=1.5 \ \text{m}^3/\text{s} \\
\text{Outflow}, \ O & = 1.25 \ \text{m}^3/\text{s} \\
\text{change in storage}, \ \Delta S & = 1.0 \ \text{m} \\
\text{Precipitation}, \ P&=24 \ \text{cm} \\
\text{time}, \ t &= 1 \ \text{month} = 30 \ \text{days}
\end{align*}

The required value is the \text{Evaporation}, \ E.

We shall use the formula

\Delta S=I+P-O-E

Solving for E in terms of the other variables, we have

E=I+P-O-\Delta S

Before we can substitute all the given values, we need to convert everything to the same unit of cm.

\begin{align*}
\text{Inflow}&=\frac{1.5\:\frac{\text{m}^3}{\text{s}}\cdot \frac{100\:\text{cm}}{1\:\text{m}}\cdot \frac{3600\:\text{s}}{1\:\text{hr}}\cdot \frac{24\:\text{hr}}{1\:\text{day}}\cdot \frac{30\:\text{days}}{1\:\text{month}}\cdot 1\:\text{month}}{708,000\:\text{m}^2} \\
\text{Inflow}&=549.1525 \ \text{cm}
\end{align*}
\begin{align*}
\text{Outflow}&=\frac{1.25\:\frac{\text{m}^3}{\text{s}}\cdot \frac{100\:\text{cm}}{1\:\text{m}}\cdot \frac{3600\:\text{s}}{1\:\text{hr}}\cdot \frac{24\:\text{hr}}{1\:\text{day}}\cdot \frac{30\:\text{days}}{1\:\text{month}}\cdot 1\:\text{month}}{708,000\:\text{m}^2} \\
\text{Outflow}&=457.6271 \ \text{cm}
\end{align*}
\Delta S=1.0 \ \text{m} \times \frac{100 \ \text{cm}}{1.0 \ \text{m}}=100 \ \text{cm}

Now, we can substitute the given values in the formula

\begin{align*}
E & =I+P-O-\Delta S \\
E& =549.1525 \ \text{cm}+24 \text{cm}-457.6271 \ \text{cm}-100 \ \text{cm} \\
E& =15.5254 \ \text{cm} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Hydrology and Floodplain Analysis by Bedient et.al. Chapter 1 Problem 6


A lake with a surface area of 1050 acres was monitored over a period of time. During a one-month period, the inflow was 33 cfs, the outflow was 27 cfs, and a 1.5-in. seepage loss was measured. During the same month, the total precipitation was 4.5 in. Evaporation loss was estimated as 6.0 in. Estimate the storage change for this lake during the month.


Solution:

We are given the following values:

\begin{align*}
\text{Area}, \ A&=1050 \ \text{acres} \\
\text{Time}, \ t&=1 \ \text{month} \\
\text{Inflow}, \ I&=33 \ \text{cfs} \\
\text{Outflow}, \ O&=27 \ \text{cfs} \\
\text{Ground seepage}, \ G&=1.5 \ \text{in} \\
\text{Precipitation}, \ P&=4.5 \ \text{in} \\
\text{Evaporation}, \ E&=6.0 \ \text{in}
\end{align*}

The formula that we are going to use is:

\sum \text{Inflows}-\sum \text{Outflows}=\text{Change in Storage}, \Delta S \\
\\ 
\sum I-\sum Q=\Delta S

In this case, the inflows are \text{Inflow} \ I and \text{Precipitation}, \ P, while the others are outflows. Our formula now becomes

\color{Blue} \sum \text{Inflow}-\color{Red} \sum \text{Outflow}=\color{Green} \Delta S
\\
\color{Blue}(I+P)- \color{Red}(O+G+E)=\color{Green}\Delta S

Before substituting, we need to convert all the given to inches. More specifically the outflow O and inflow I.

The inflow and outflow, in cfs, will be divided by the given are to come up with units of inches.

The inflow is

\begin{align*}
\text{Inflow}&=\frac{33\:\frac{\text{ft}^3}{\text{s}}\cdot \frac{1\:\text{acre}}{43560\:\text{ft}^2}\cdot \frac{12\:\text{in}}{1\:\text{ft}}\cdot \frac{3600\:\text{s}}{1\:\text{hr}}\cdot \frac{24\:\text{hr}}{1\:\text{day}}\cdot \frac{30\:\text{days}}{1\:\text{month}}\cdot 1\:\text{month}}{1050\:\text{acres}} \\
\text{Inflow}& =22.4416 \ \text{in}
\end{align*}

The outflow is

\begin{align*}
\text{Outflow}&=\frac{27\:\frac{\text{ft}^3}{\text{s}}\cdot \frac{1\:\text{acre}}{43560\:\text{ft}^2}\cdot \frac{12\:\text{in}}{1\:\text{ft}}\cdot \frac{3600\:\text{s}}{1\:\text{hr}}\cdot \frac{24\:\text{hr}}{1\:\text{day}}\cdot \frac{30\:\text{days}}{1\:\text{month}}\cdot 1\:\text{month}}{1050\:\text{acres}} \\
\text{Outflow}& =18.3613\ \text{in}
\end{align*}

Now that everything is in inches, we can now substitute the values in the formula

\begin{align*}
\Delta S&=\left( I+P \right)-\left( O+G+E \right) \\
\Delta S&=\left( 22.4416 \ \text{in}+4.5 \ \text{in} \right)-\left( 18.3613 \ \text{in}+1.5 \ \text{in}+6 \ \text{in} \right) \\
\Delta S&=1.0803 \ \text{in} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

We can also state the change in storage in terms of volume by multiplying the given area

\begin{align*}
\Delta S \ \text{in volume} & =1.0803 \ \text{in}\times 1050 \ \text{acres}\times \frac{1 \ \text{ft}}{12 \ \text{in}}\\
\Delta S \ \text{in volume} & = 94.5263 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

Hydrology and Floodplain Analysis by Bedient et.al. Chapter 1 Problem 5


List seven major factors that determine a watershed’s response to a given rainfall.


Solution:

The seven major factors that determine a watershed’s response to a given rainfall are:

  1. Drainage Area
  2. Channel Slope
  3. Soil Types
  4. Land Use
  5. Land Cover
  6. Main Channel and tributary characteristics-channel morphology
  7. The shape, slope, and character of the floodplain

Advertisements
Advertisements

Hydrology and Floodplain Analysis by Bedient et.al. Chapter 1 Problem 4


Explain how air masses are classified. Where are these types of air masses located?


Solution:

They are classified in two ways: the source from which they are generated, land (continental) or water (maritime), and the latitude of generation (polar or tropical).

These air masses are present in the United States. The Continental polar emanates from Canada and passes over the northern United States. The maritime polar air mass also comes southward from the Atlantic Coast of Canada and affects the New England states. Another maritime polar comes from the Pacific and hits the extreme northwestern states. The maritime tropical air masses come from the Pacific, the Gulf of Mexico, and the Atlantic (these affect the entire Southern United States). Continental tropical air masses form only during summer. They originate in Texas and affect the states bordering the north.


Advertisements
Advertisements

Hydrology and Floodplain Analysis by Bedient et.al. Chapter 1 Problem 3


Explain the difference between humidity and relative humidity.


Solution:

Humidity is a measure of the amount of water vapor in the atmosphere and can be expressed in several ways. Specific humidity is a mass of water vapor in a unit mass of moist air while relative humidity is a ratio of the air’s actual water vapor content compared to the amount of water vapor at saturation for that temperature.


Advertisements
Advertisements

Hydrology and Floodplain Analysis by Bedient et.al. Chapter 1 Problem 2


Who is responsible for the first recorded rainfall measurements? Describe the technique used to obtain these measurements.


Solution:

The first recording was obtained in the seventeenth century by Perrault. He obtained his data by comparing measured rainfall to the estimated flow in the Seine River to show how the two were related


Advertisements
Advertisements

Chapter 1: Hydrologic Principles


Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30


Advertisements
Advertisements

Hydrology and Floodplain Analysis by Bedient et.al. Chapter 1 Problem 1


What is the hydrologic cycle? What are the pathways that precipitation falling onto the land surface of the Earth is dispersed to the hydrologic cycle?


Solution:

The hydrologic cycle is a continuous process in which water is evaporated from water surfaces and the oceans, moves inland as moist are masses, and produces precipitation if the correct vertical lifting conditions exist.

A portion of precipitation (rainfall) is retained in the soil near where it falls and returns to the atmosphere via evaporation (the conversion of water vapor from a water surface) and transpiration (the loss of water vapor through plant tissue and leaves). Combined loss is called evapotranspiration and is a maximum value if the water supply in the soil moisture conditions and soil may reenter channels layer as interflow or may percolate to recharge the shallow groundwater. The remaining portion of the precipitation becomes overland flow or direct runoff which flows generally in a downgradient direction to accumulate in local streams that then flow into rivers.


Advertisements
Advertisements