Tag Archives: Impulse

College Physics by Openstax Chapter 8 Problem 8


A car moving at 10.0 m/s crashes into a tree and stops in 0.26 s. Calculate the force the seat belt exerts on a passenger in the car to bring him to a halt. The mass of the passenger is 70.0 kg.


Solution:

Newton’s second law of motion in terms of momentum states that the net external force equals the change in momentum of a system divided by the time over which it changes. In symbols, Newton’s second law of motion is defined to be

Fnet=ΔpΔt\text{F}_\text{net} = \frac{\Delta \textbf{p}}{\Delta t}

Moreover, Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity.

p=mv\textbf{p} = m \textbf{v}

So, the Newton’s second law becomes

Fnet=mΔvΔt\text{F}_\text{net} = \frac{m\Delta\textbf{v}}{\Delta t}

Substituting the given values, we have

Fnet=mΔvΔtFnet=(70 kg)(10 m/s)0.26 sFnet=2692.3077 NFnet=2.69×103 N  (Answer)\begin{align*} \text{F}_\text{net} = & \frac{m \Delta\textbf{v}}{\Delta t} \\ \text{F}_\text{net} = & \frac{\left( 70\ \text{kg} \right)\left( 10\ \text{m/s} \right)}{0.26\ \text{s}} \\ \text{F}_\text{net} = & 2692.3077 \ \text{N} \\ \text{F}_\text{net} = & 2.69 \times 10^{3}\ \text{N} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

College Physics Chapter 8 Problem 7


A bullet is accelerated down the barrel of a gun by hot gases produced in the combustion of gun powder. What is the average force exerted on a 0.0300-kg bullet to accelerate it to a speed of 600.0 m/s in a time of 2.00 ms (milliseconds)?


Solution:

Impulse, or change in momentum, equals the average net external force multiplied by the time this force acts:

Δp=FnetΔt\Delta \textbf{p}=F_{\text{net}} \Delta t

    The unknown in this problem is the average force. We can solve the formula for force in terms of the other quantities.

    Fnet=ΔpΔtF_{\text{net}} = \frac{\Delta \textbf{p}}{\Delta t}

    We are given the following values:

    Δp=mΔv=(0.0300 kg)(600.0 m/s)=18.00 kgm/sΔt=2.00×103 s\begin{align*} \Delta \textbf{p} & = m \Delta v = \left( 0.0300\ \text{kg} \right)\left( 600.0\ \text{m/s} \right) = 18.00\ \text{kg}\cdot \text{m/s} \\ \Delta t& = 2.00 \times 10^{-3}\ \text{s} \end{align*}

    Substituting these given values, we can solve for the unknown.

    Fnet=ΔpΔtFnet=18.00 kgm/s2.00×103 sFnet=9000 N  (Answer)\begin{align*} F_{\text{net}} & = \frac{\Delta \textbf{p}}{\Delta t} \\ F_{\text{net}} & = \frac{18.00\ \text{kg}\cdot \text{m/s}}{2.00 \times 10^{-3}\ \text{s}}\\ F_{\text{net}} & = 9000\ \text{N} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    Advertisements
    Advertisements

    College Physics by Openstax Chapter 8 Problem 5


    A runaway train car that has a mass of 15,000 kg travels at a speed of 5.4 m/s down a track. Compute the time required for a force of 1500 N to bring the car to rest.


    Solution:

    Newton’s second law of motion in terms of momentum states that the net external force equals the change in momentum of a system divided by the time over which it changes. In symbols, Newton’s second law of motion is defined to be

    Fnet=ΔpΔt,\textbf{F}_{\text{net}} = \frac{\Delta \textbf{p}}{\Delta t} ,

    where Fnet\textbf{F}_{\text{net}} is the net external force, Δp\Delta \textbf{p} is the change in momentum, and Δt\Delta t is the change in time.

    For this problem, we are given the following values:

    m=15000 kgvinitial=5.4 m/svfinal=0 m/sFnet=1500 N\begin{align*} m & = 15000\ \text{kg} \\ \textbf{v}_{\text{initial}} & = 5.4\ \text{m}/\text{s} \\ \textbf{v}_{\text{final}} & = 0\ \text{m}/\text{s} \\ \textbf{F}_{\text{net}} & = 1500\ \text{N} \end{align*}

    Substitute these given values in the equation above.

    Fnet=ΔpΔtΔt=ΔpFnetΔt=m(Δv)FnetΔt=15000 kg(5.4 m/s)1500 NΔt=54 s  (Answer)\begin{align*} \textbf{F}_{\text{net}} & = \frac{\Delta \textbf{p}}{\Delta t} \\ \Delta t & = \frac{\Delta \textbf{p}}{\textbf{F}_{\text{net}}} \\ \Delta t & = \frac{m \left( \Delta\textbf{v} \right)}{\textbf{F}_{\text{net}}} \\ \Delta t & = \frac{15000\ \text{kg} \left( 5.4\ \text{m}/\text{s} \right)}{1500\ \text{N}} \\ \Delta t & = 54\ s \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    It would take 54 seconds to stop the car.


    Solution Guides to College Physics by Openstax Chapter 8 Banner

    Chapter 8: Linear Momentum and Collisions

    Advertisements

    Linear Momentum and Force

    Problem 1

    Problem 2

    Problem 3

    Problem 4

    Problem 5

    Problem 6

    Advertisements

    Impulse

    Problem 7

    Problem 8

    Problem 9

    Problem 10

    Problem 11

    Problem 12

    Problem 13

    Problem 14

    Problem 15

    Problem 16

    Problem 17

    Problem 18

    Problem 19

    Problem 20

    Problem 21

    Problem 22

    Advertisements

    Conservation of Momentum

    Problem 23

    Problem 24

    Problem 25

    Problem 26

    Problem 27

    Advertisements

    Elastic Collisions in One Dimension

    Problem 28

    Problem 29

    Problem 30

    Advertisements

    Inelastic Collisions in One Dimension

    Problem 31

    Problem 32

    Problem 33

    Problem 34

    Problem 35

    Problem 36

    Problem 37

    Problem 38

    Problem 39

    Problem 40

    Problem 41

    Problem 42

    Problem 43

    Problem 44

    Advertisements

    Collisions of Point Masses in Two Dimensions

    Problem 45

    Problem 46

    Problem 47

    Problem 48

    Problem 49

    Problem 50

    Problem 51

    Problem 52

    Advertisements

    Introduction to Rocket Propulsion

    Problem 53

    Problem 54

    Problem 55

    Problem 56

    Problem 57

    Problem 58

    Problem 59

    Problem 60

    Problem 61

    Problem 62

    Problem 63

    Problem 64

    Advertisements

    Advertisements
    Advertisements