A bullet is fired from a gun at a shooting range. The bullet hits the ground after 0.32 seconds. How far did it travel horizontally and vertically in this time if it was fired at a velocity of 1100 m/s?
Solution:
Solution:
Solution:
We are given the following: a=6.20 \times 10^{5} \ \text{m/s}^2; \Delta t=8.10 \times 10^{-4} \ \text{s}; and v_0=0 \text{m/s}.
The muzzle velocity of the bullet is computed as follows:
\begin{align*} v_f & =v_0+at \\ v_f & = 0\:\text{m/s}+\left(6.20\times 10^5\text{ m/s}^2\right)\left(8.10\times 10^{-4}\:\text{s}\right) \\ v_f & =502\:\text{m/s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Therefore, the muzzle velocity, or final velocity, is 502 m/s.
Solution:
We are given the following values: a=-2.10 \times 10^4 \ \text{m/s}^2; t=1.85 \times 10^{-3} \ \text{s}; v_f=0 \ \text{m/s}.
The formula in solving for the initial velocity is
v_0=v_f-at
Substitute the given values
\begin{align*} v_0 & =0\:\text{m/s}-\left(-2.10\times 10^4\text{ m/s}^2\right)\left(1.85\times 10^{-3}\:\text{s}\right) \\ v_0 & =38.85\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
You must be logged in to post a comment.