Tag Archives: Linear Momentum

College Physics Chapter 8 Problem 7


A bullet is accelerated down the barrel of a gun by hot gases produced in the combustion of gun powder. What is the average force exerted on a 0.0300-kg bullet to accelerate it to a speed of 600.0 m/s in a time of 2.00 ms (milliseconds)?


Solution:

Impulse, or change in momentum, equals the average net external force multiplied by the time this force acts:

Δp=FnetΔt\Delta \textbf{p}=F_{\text{net}} \Delta t

    The unknown in this problem is the average force. We can solve the formula for force in terms of the other quantities.

    Fnet=ΔpΔtF_{\text{net}} = \frac{\Delta \textbf{p}}{\Delta t}

    We are given the following values:

    Δp=mΔv=(0.0300 kg)(600.0 m/s)=18.00 kgm/sΔt=2.00×103 s\begin{align*} \Delta \textbf{p} & = m \Delta v = \left( 0.0300\ \text{kg} \right)\left( 600.0\ \text{m/s} \right) = 18.00\ \text{kg}\cdot \text{m/s} \\ \Delta t& = 2.00 \times 10^{-3}\ \text{s} \end{align*}

    Substituting these given values, we can solve for the unknown.

    Fnet=ΔpΔtFnet=18.00 kgm/s2.00×103 sFnet=9000 N  (Answer)\begin{align*} F_{\text{net}} & = \frac{\Delta \textbf{p}}{\Delta t} \\ F_{\text{net}} & = \frac{18.00\ \text{kg}\cdot \text{m/s}}{2.00 \times 10^{-3}\ \text{s}}\\ F_{\text{net}} & = 9000\ \text{N} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    Advertisements
    Advertisements

    College Physics by Openstax Chapter 8 Problem 6


    The mass of Earth is 5.972×1024 kg5.972 \times 10^{24}\ \text{kg} and its orbital radius is an average of 1.496×1011 m1.496 \times 10^{11}\ \text{m}. Calculate its linear momentum.


    Solution:

    Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity. In symbols, linear momentum p\textbf{p} is defined to be

    p=mv\textbf{p} = m \textbf{v}

    where mm is the mass of the system and v\textbf{v} is its velocity.

    For this problem, the mass has already been given to be m=5.972×1024 kgm=5.972 \times 10^{24}\ \text{kg}. We now proceed to calculating the velocity. We can solve the velocity of the using the formula

    v=dt\textbf{v} = \frac{d}{t}

    where dd is the total distance travelled, and tt is the total time of travel. The total distance traveled is just the circumference of the orbit, and the total time of travel is 1 year for 1 full revolution.

    v=dtv=2πrtv=2π(1.496 ×1011 m)36514 days×24 hrsday×3600 sec1 hrv=29785.6783 m/s\begin{align*} \textbf{v} & = \frac{d}{t} \\ \textbf{v} & = \frac{2 \pi r}{t} \\ \textbf{v} & = \frac{2 \pi \left( 1.496\ \times 10^{11} \ \text{m} \right)}{365 \frac{1}{4} \ \text{days} \times \frac{24\ \text{hrs}}{\text{day}} \times \frac{3600\ \text{sec}}{1\ \text{hr}}} \\ \textbf{v} & = 29 785. 6783\ \text{m}/\text{s} \end{align*}

    Therefore, its linear momentum is

    p=mvp=(5.972×1024 kg)(29785.6783 m/s)p=1.78×1029 kgm/ (Answer)\begin{align*} \textbf{p} & = m \textbf{v} \\ \textbf{p} & = \left( 5.972 \times 10^{24}\ \text{kg} \right) \left( 29 785. 6783\ \text{m}/\text{s} \right) \\ \textbf{p} & = 1.78 \times 10^{29}\ \text{kg} \cdot \text{m}/\text{s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    College Physics by Openstax Chapter 8 Problem 5


    A runaway train car that has a mass of 15,000 kg travels at a speed of 5.4 m/s down a track. Compute the time required for a force of 1500 N to bring the car to rest.


    Solution:

    Newton’s second law of motion in terms of momentum states that the net external force equals the change in momentum of a system divided by the time over which it changes. In symbols, Newton’s second law of motion is defined to be

    Fnet=ΔpΔt,\textbf{F}_{\text{net}} = \frac{\Delta \textbf{p}}{\Delta t} ,

    where Fnet\textbf{F}_{\text{net}} is the net external force, Δp\Delta \textbf{p} is the change in momentum, and Δt\Delta t is the change in time.

    For this problem, we are given the following values:

    m=15000 kgvinitial=5.4 m/svfinal=0 m/sFnet=1500 N\begin{align*} m & = 15000\ \text{kg} \\ \textbf{v}_{\text{initial}} & = 5.4\ \text{m}/\text{s} \\ \textbf{v}_{\text{final}} & = 0\ \text{m}/\text{s} \\ \textbf{F}_{\text{net}} & = 1500\ \text{N} \end{align*}

    Substitute these given values in the equation above.

    Fnet=ΔpΔtΔt=ΔpFnetΔt=m(Δv)FnetΔt=15000 kg(5.4 m/s)1500 NΔt=54 s  (Answer)\begin{align*} \textbf{F}_{\text{net}} & = \frac{\Delta \textbf{p}}{\Delta t} \\ \Delta t & = \frac{\Delta \textbf{p}}{\textbf{F}_{\text{net}}} \\ \Delta t & = \frac{m \left( \Delta\textbf{v} \right)}{\textbf{F}_{\text{net}}} \\ \Delta t & = \frac{15000\ \text{kg} \left( 5.4\ \text{m}/\text{s} \right)}{1500\ \text{N}} \\ \Delta t & = 54\ s \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    It would take 54 seconds to stop the car.


    College Physics by Openstax Chapter 8 Problem 4


    (a) What is the momentum of a garbage truck that is 1.20×104 kg and is moving at 30.0 m/s? (b) At what speed would an 8.00-kg trash can have the same momentum as the truck?


    Solution:

    Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity. In symbols, linear momentum p\textbf{p} is defined as

    p=mv,\textbf{p}=m \textbf{v},

    where mm is the mass of the system and v\textbf{v} is its velocity.

    Part A. The momentum of the garbage truck

    The garbage truck has the following quantities given:

    mtruck=1.20×104 kg vtruck=30.0 m/s\begin{align*} m_{\text{truck}} & = 1.20 \times 10^{4}\ \text{kg} \ \\ \textbf{v}_{\text{truck}} & = 30.0\ \text{m}/\text{s} \end{align*}

    Substitute these values in the formula of momentum to solve for the momentum of the truck.

    p=mvp=(1.20×104 kg)(30.0 m/s)p=360000 kgm/sp=3.60×105 kgm/ (Answer)\begin{align*} \textbf{p} & = m \textbf{v} \\ \textbf{p} & = \left( 1.20 \times 10^{4}\ \text{kg} \right) \left( 30.0\ \text{m}/\text{s} \right) \\ \textbf{p} & = 360000\ \text{kg} \cdot \text{m}/\text{s} \\ \textbf{p} & = 3.60 \times 10^{5}\ \text{kg} \cdot \text{m}/\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    Part B. The Speed of a Trash to have the same Momentum as the Truck

    The trash has the following properties:

    m=8.00 kgp=3.60×105 kgm/s\begin{align*} m & = 8.00\ \text{kg} \\ \textbf{p} & = 3.60 \times 10^{5}\ \text{kg} \cdot \text{m}/\text{s} \end{align*}

    We now use the formula for momentum to solve for the unknown velocity.

    p=mvv=pmv=3.60×105 kgm/s8.00 kgv=45000 m/sv=4.5×104 m/ (Answer)\begin{align*} \textbf{p} & = m \textbf{v} \\ \textbf{v} & = \frac{\textbf{p}}{m} \\ \textbf{v} & = \frac{3.60 \times 10^{5}\ \text{kg} \cdot \text{m}/\text{s}}{8.00\ \text{kg}} \\ \textbf{v} & = 45000\ \text{m}/\text{s} \\ \textbf{v} & = 4.5 \times 10^{4}\ \text{m}/\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    College Physics by Openstax Chapter 8 Problem 3


    (a) At what speed would a 2.00×104-kg airplane have to fly to have a momentum of 1.60×109 kg⋅m/s (the same as the ship’s momentum in the problem above)? (b) What is the plane’s momentum when it is taking off at a speed of 60.0 m/s? (c) If the ship is an aircraft carrier that launches these airplanes with a catapult, discuss the implications of your answer to (b) as it relates to recoil effects of the catapult on the ship.


    Solution:

    Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity. In symbols, linear momentum p\textbf{p} is defined as

    p=mv,\textbf{p}=m \textbf{v},

    where mm is the mass of the system and v\textbf{v} is its velocity.

    Part A. The Speed of an Airplane Given its Momentum

    The airplane has the following quantities given:

    mairplane=2.00×104 kgpairplane=1.60×109 kgm/s\begin{align*} m_{\text{airplane}} & = 2.00 \times 10^{4}\ \text{kg} \\ \textbf{p}_{\text{airplane}} & = 1.60 \times 10^{9}\ \text{kg} \cdot \text{m}/\text{s} \end{align*}

    Using the formula of momentum, we can solve for the velocity in terms of the other variables. We can then substitute the given quantities to solve for the velocity of the airplane.

    pairplane=mairplanevairplanevairplane=pairplanemairplanevairplane=1.60×109 kgm/s2.00×104 kgvairplane=80000 m/svairplane=8.00×104 m/ (Answer)\begin{align*} \textbf{p}_{\text{airplane}} & = m_{\text{airplane}} \textbf{v}_{\text{airplane}} \\ \textbf{v}_{\text{airplane}} & = \frac{\textbf{p}_{\text{airplane}}}{m_{\text{airplane}}} \\ \textbf{v}_{\text{airplane}} & = \frac{1.60 \times 10^{9}\ \text{kg} \cdot \text{m}/\text{s}}{2.00 \times 10^{4}\ \text{kg}} \\ \textbf{v}_{\text{airplane}} & = 80000\ \text{m}/\text{s} \\ \textbf{v}_{\text{airplane}} & = 8.00 \times 10^{4}\ \text{m}/\text{s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    Part B. The Airplane’s Momentum When it is Taking Off

    In this case, we are given the following properties of an airplane taking off:

    mairplane=2.00×104 kgvairplane=60.0 m/s\begin{align*} m_{\text{airplane}} & = 2.00 \times 10^{4}\ \text{kg} \\ \textbf{v}_{\text{airplane}} & = 60.0\ \text{m}/\text{s} \\ \end{align*}

    The momentum of the airplane at this instance is calculated as

    pairplane=mairplanevairplanepairplane=(2.00×104 kg)(60.0 m/s)pairplane=1200000 kgm/spairplane=1.20×106 kgm/ (Answer)\begin{align*} \textbf{p}_{\text{airplane}} & = m_{\text{airplane}} \textbf{v}_{\text{airplane}} \\ \textbf{p}_{\text{airplane}} & = \left( 2.00 \times 10^{4}\ \text{kg} \right)\left( 60.0\ \text{m}/\text{s} \right) \\ \textbf{p}_{\text{airplane}} & = 1200000\ \text{kg} \cdot \text{m}/\text{s} \\ \textbf{p}_{\text{airplane}} & = 1.20 \times 10^{6}\ \text{kg} \cdot \text{m}/\text{s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    Part C

    Since the momentum of the airplane is 3 orders of magnitude smaller than the ship, the ship will not recoil very much. The recoil would be -0.01 m/s, which is probably not noticeable.


    College Physics by Openstax Chapter 8 Problem 2


    (a) What is the mass of a large ship that has a momentum of 1.60×109 kg⋅m/s, when the ship is moving at a speed of 48.0 km/h? (b) Compare the ship’s momentum to the momentum of a 1100-kg artillery shell fired at a speed of 1200 m/s.


    Solution:

    Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity. In symbols, linear momentum p\textbf{p} is defined as

    p=mv,\textbf{p}=m \textbf{v},

    where mm is the mass of the system and v\textbf{v} is its velocity.

    Part A. The Mass of a Large Ship Given its Momentum

    For this part, we are given the following quantities of the ship:

    pship=1.60×109 kgm/svship=48.0 km/h=13.3333 m/s\begin{align*} \textbf{p}_{\text{ship}} & = 1.60 \times 10^{9}\ \text{kg} \cdot \text{m}/\text{s} \\ \textbf{v}_{\text{ship}} & = 48.0\ \text{km}/\text{h} = 13.3333\ \text{m}/\text{s} \end{align*}

    From the formula of momentum, we can solve for mm in terms of p\textbf{p} and v\textbf{v}. Then we can substitute the given values to solve for the mass of the ship.

    pship=mshipvshipmship=pshipvshipmship=1.60×109 kgm/s13.3333 m/smship=120000000 kgmship=1.20×108 kg  (Answer)\begin{align*} \textbf{p}_{\text{ship}} & = m_{\text{ship}} \textbf{v}_{\text{ship}} \\ m_{\text{ship}} & = \frac{\textbf{p}_{\text{ship}}}{\textbf{v}_{\text{ship}}} \\ m_{\text{ship}} & = \frac{1.60 \times 10^{9}\ \text{kg} \cdot \text{m}/\text{s}}{13.3333\ \text{m}/\text{s}} \\ m_{\text{ship}} & = 120000000\ \text{kg} \\ m_{\text{ship}} & = 1.20 \times 10^{8} \ \text{kg}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    Part B. Comparing the Momentum of a Large Ship with an Artillery Shell

    The artillery shell has a mass of 1100 kilograms and a speed of 1200 m/s. Therefore, its momentum is

    pshell=mshellvshellpshell=(1100 kg)(1200 m/s)pshell=1320000 kgm/spshell=1.32×106 kgm/s\begin{align*} \textbf{p}_{\text{shell}} & = m_{\text{shell}} \textbf{v}_{\text{shell}} \\ \textbf{p}_{\text{shell}} & = \left( 1100\ \text{kg} \right)\left( 1200\ \text{m}/\text{s} \right) \\ \textbf{p}_{\text{shell}} & = 1320000\ \text{kg} \cdot \text{m}/\text{s} \\ \textbf{p}_{\text{shell}} & = 1.32 \times 10^{6}\ \text{kg} \cdot \text{m}/\text{s} \end{align*}

    Comparing the momentum of the large ship and the shell, we have.

    pshippshell=1.60×109 kgm/s1.32×106 kgm/spshippshell=1212.1212pship=1212.1212 pshell  (Answer)\begin{align*} \frac{\textbf{p}_{\text{ship}}}{\textbf{p}_{\text{shell}}} & = \frac{1.60 \times 10^{9}\ \text{kg} \cdot \text{m}/\text{s}}{1.32 \times 10^{6}\ \text{kg} \cdot \text{m}/\text{s}} \\ \frac{\textbf{p}_{\text{ship}}}{\textbf{p}_{\text{shell}}} & = 1212.1212 \\ \textbf{p}_{\text{ship}} & = 1212.1212\ \textbf{p}_{\text{shell}} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    The ship has a momentum that is about 1200 times the momentum of the artillery shell.


    College Physics by Openstax Chapter 8 Problem 1


    (a) Calculate the momentum of a 2000-kg elephant charging a hunter at a speed of 7.50 m/s. (b) Compare the elephant’s momentum with the momentum of a 0.0400-kg tranquilizer dart fired at a speed of 600 m/s. (c) What is the momentum of the 90.0-kg hunter running at 7.40 m/s after missing the elephant?


    Solution:

    Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity. In symbols, linear momentum p\textbf{p} is defined as

    p=mv,\textbf{p}=m \textbf{v},

    where mm is the mass of the system and v\textbf{v} is its velocity.

    Part A. The Momentum of the Elephant

    We are given the mass and the velocity of the elephant, so we can just directly substitute these values in the formula for momentum.

    pelephant=melephantvelephantpelephant=(2000 kg)(7.50 m/s)pelephant=15000 kgm/spelephant=1.50×104 kgm/ (Answer)\begin{align*} \textbf{p}_{\text{elephant}} & = m_{\text{elephant}} \textbf{v}_{\text{elephant}} \\ \textbf{p}_{\text{elephant}} & = \left( 2000\ \text{kg} \right)\left( 7.50\ \text{m}/\text{s} \right) \\ \textbf{p}_{\text{elephant}} & = 15000\ \text{kg} \cdot \text{m}/\text{s} \\ \textbf{p}_{\text{elephant}} & = 1.50 \times 10 ^{4} \ \text{kg} \cdot \text{m}/\text{s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    Part B. Comparing the momentum of the elephant in part A with the momentum of a tranquilizer

    First, we need to calculate the momentum of the tranquilizer.

    ptranquilizer=mtranquilizervtranquilizerptranquilizer=(0.0400 kg)(600 m/s)ptranquilizer=24 kgm/s\begin{align*} \textbf{p}_{\text{tranquilizer}} & = m_{\text{tranquilizer}} \textbf{v}_{\text{tranquilizer}} \\ \textbf{p}_{\text{tranquilizer}} & = \left( 0.0400\ \text{kg} \right)\left( 600\ \text{m}/\text{s} \right) \\ \textbf{p}_{\text{tranquilizer}} & = 24\ \text{kg} \cdot \text{m}/\text{s} \end{align*}

    Now, we can compare their momentums.

    pelephantptranquilizer=15000 kgm/s24 kgm/spelephantptranquilizer=625pelephant=625 ptranquilizer  (Answer)\begin{align*} \frac{\textbf{p}_{\text{elephant}}}{\textbf{p}_{\text{tranquilizer}}} & = \frac{15000\ \text{kg} \cdot \text{m}/\text{s}}{24\ \text{kg} \cdot \text{m}/\text{s} } \\ \frac{\textbf{p}_{\text{elephant}}}{\textbf{p}_{\text{tranquilizer}}} & = 625 \\ \textbf{p}_{\text{elephant}} & = 625\ \textbf{p}_{\text{tranquilizer}} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    The momentum of the elephant is 625 times larger than the momentum of the tranquilizer.

    Part C. The Momentum of a Hunter Running after missing the elephant

    phunter=mhuntervhunterphunter=(90.0 kg)(7.40 m/s)phunter=666 kgm/ (Answer)\begin{align*} \textbf{p}_{\text{hunter}} & = m_{\text{hunter}} \textbf{v}_{\text{hunter}} \\ \textbf{p}_{\text{hunter}} & = \left( 90.0\ \text{kg} \right)\left( 7.40\ \text{m}/\text{s} \right) \\ \textbf{p}_{\text{hunter}} & = 666\ \text{kg} \cdot \text{m}/\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

    Solution Guides to College Physics by Openstax Chapter 8 Banner

    Chapter 8: Linear Momentum and Collisions

    Advertisements

    Linear Momentum and Force

    Problem 1

    Problem 2

    Problem 3

    Problem 4

    Problem 5

    Problem 6

    Advertisements

    Impulse

    Problem 7

    Problem 8

    Problem 9

    Problem 10

    Problem 11

    Problem 12

    Problem 13

    Problem 14

    Problem 15

    Problem 16

    Problem 17

    Problem 18

    Problem 19

    Problem 20

    Problem 21

    Problem 22

    Advertisements

    Conservation of Momentum

    Problem 23

    Problem 24

    Problem 25

    Problem 26

    Problem 27

    Advertisements

    Elastic Collisions in One Dimension

    Problem 28

    Problem 29

    Problem 30

    Advertisements

    Inelastic Collisions in One Dimension

    Problem 31

    Problem 32

    Problem 33

    Problem 34

    Problem 35

    Problem 36

    Problem 37

    Problem 38

    Problem 39

    Problem 40

    Problem 41

    Problem 42

    Problem 43

    Problem 44

    Advertisements

    Collisions of Point Masses in Two Dimensions

    Problem 45

    Problem 46

    Problem 47

    Problem 48

    Problem 49

    Problem 50

    Problem 51

    Problem 52

    Advertisements

    Introduction to Rocket Propulsion

    Problem 53

    Problem 54

    Problem 55

    Problem 56

    Problem 57

    Problem 58

    Problem 59

    Problem 60

    Problem 61

    Problem 62

    Problem 63

    Problem 64

    Advertisements

    Advertisements
    Advertisements