Tag Archives: linear speed

Problem 6-14: The centripetal acceleration and a linear speed of a point on an edge of an ordinary workshop grindstone


An ordinary workshop grindstone has a radius of 7.50 cm and rotates at 6500 rev/min.

(a) Calculate the magnitude of the centripetal acceleration at its edge in meters per second squared and convert it to multiples of g.

(b) What is the linear speed of a point on its edge?


Solution:

We are given the following values: r=7.50 cmr=7.50\ \text{cm}, and ω=6500 rev/min\omega = 6500\ \text{rev/min} . We need to convert these values into appropriate units so that we can come up with sensical units when we solve for the centripetal acceleration.

r=7.50 cm=0.075 mr = 7.50 \ \text{cm} = 0.075 \ \text{m}
ω=6500 rev/min×2π rad1 rev×1 min60 sec=680.6784 rad/sec\omega = 6500 \ \text{rev/min} \times\frac{2\pi \ \text{rad}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60\ \text{sec}} = 680.6784 \ \text{rad/sec}

Part A

We are asked to solve for the centripetal acceleration aca_{c}. Basing on the given data, we are going to use the formula

ac=rω2a_{c} = r \omega ^{2}

Substituting the given values, we have

ac=rω2ac=(0.075 m)(680.6784 rad/sec)2ac=34749.2313 m/s2ac=3.47×104 m/s2  (Answer)\begin{align*} a_{c} & = r \omega ^2 \\ \\ a_{c} & = \left( 0.075 \ \text{m} \right) \left( 680.6784 \ \text{rad/sec} \right)^2 \\ \\ a_{c} & = 34749.2313 \ \text{m/s}^2 \\ \\ a_{c} & = 3.47 \times 10^{4} \ \text{m/s} ^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Now, we can convert the centripetal acceleration in multiples of g.

ac=34749.2313 m/s2×g9.81 m/s2ac=3542.2254gac=3.54×103g  (Answer)\begin{align*} a_{c} & = 34749.2313 \ \text{m/s}^2 \times \frac{g}{9.81 \ \text{m/s}^2}\\ \\ a_{c} & =3542.2254g \\ \\ a_{c} & = 3.54\times 10^3 g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are then asked for the linear speed, vv of the point on the edge. So, we can use the given values to find the linear speed. We are going to use the formula

v=rωv=r\omega

If we substitute the given values, we have

v=rωv=(0.075 m)(680.6784 rad/sec)  v=51.0509 m/sv=51.1 m/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 0.075 \ \text{m} \right)\left( 680.6784\ \text{rad/sec} \right) \ \ \\ \\ v & = 51.0509 \ \text{m/s} \\ \\ v & = 51.1 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-13: The motion of the WWII fighter plane propeller


The propeller of a World War II fighter plane is 2.30 m in diameter.

(a) What is its angular velocity in radians per second if it spins at 1200 rev/min?

(b) What is the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac?

(c) What is the centripetal acceleration of the propeller tip under these conditions? Calculate it in meters per second squared and convert to multiples of g.


Solution:

Part A

We are converting the angular velocity ω=1200 rev/min\omega = 1200\ \text{rev/min} into radians per second.

ω=1200 revmin×2π radian1 rev×1 min60 secω=125.6637 radians/secω=126 radians/sec  (Answer)\begin{align*} \omega = & \frac{1200\ \text{rev}}{\text{min}}\times \frac{2\pi \ \text{radian}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60 \ \text{sec}} \\ \\ \omega = & 125.6637 \ \text{radians/sec} \\ \\ \omega = & 126 \ \text{radians/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are now solving the linear speed of the tip of the propeller by relating the angular velocity to linear velocity using the formula v=rωv = r \omega . The radius is half the diameter, so r=2.30 m2=1.15 mr= \frac{2.30\ \text{m}}{2} = 1.15 \ \text{m} .

v=rωv=(1.15 m)(125.6637 radians/sec)v=144.5132 m/sv=145 m/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 1.15 \ \text{m} \right)\left( 125.6637 \ \text{radians/sec} \right) \\ \\ v & = 144.5132 \ \text{m/s} \\ \\ v & = 145 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part C

From the computed linear speed and the given radius of the propeller, we can now compute for the centripetal acceleration ac a_{c} using the formula

ac=v2ra_{c} = \frac{v^2}{r}

If we substitute the given values, we have

ac=v2rac=(144.5132 m/s)21.15 mac=18160.0565 m/s2ac=1.82×104 m/s2  (Answer)\begin{align*} a_{c} & = \frac{v^2}{r} \\ \\ a_{c} & = \frac{\left( 144.5132 \ \text{m/s} \right)^2}{1.15 \ \text{m}} \\ \\ a_{c} & = 18160.0565 \ \text{m/s}^2 \\ \\ a_{c} & = 1.82\times 10^{4} \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

We can convert this value in multiples of gg

ac=18160.0565 m/s2×g9.81 m/s2ac=1851.1780gac=1.85×103 g  (Answer)\begin{align*} a_{c} & = 18160.0565 \ \text{m/s}^2 \times \frac{g}{9.81 \ \text{m/s}^2} \\ \\ a_{c} & = 1851.1780 g \\ \\ a_{c} & = 1.85\times 10^{3} \ g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements