Tag Archives: math solution

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 17

Advertisements

PROBLEM:

Evaluate limx0(sin(x)sin(2x)1cos(x)).\displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right).


Advertisements

SOLUTION:

Direct substitution of x=0x=0 gives the indeterminate form 00\frac{0}{0}. Therefore, we should apply trigonometric identities.

We know that sin(2x)=2sin(x)cos(x)\sin\left(2x\right)=2\sin\left(x\right)\cos\left(x\right), so we can rewrite the original function as

limx0(sin(x)sin(2x)1cos(x))=limx0(sin(x)2(sin(x)cos(x))1cos(x))=2limx0(sin2(x)cos(x)1cos(x))\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =\lim\limits_{x\to 0}\left(\frac{\sin\left(x\right)\cdot 2\left(\sin\left(x\right) \cos\left(x\right)\right)}{1-\cos\left(x\right)}\right)\\ \\ & =\displaystyle 2\cdot \lim\limits_{x\to 0}\left(\frac{\sin^2\left(x\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\ \end{align*}

We also know the Pythagorean identity sin2(x)=1cos2(x)\sin^2\left(x\right)=1-\cos^2\left(x\right). So,

limx0(sin(x)sin(2x)1cos(x))=2limx0((1cos2(x))cos(x)1cos(x))=2limx0((1+cos(x))(1cos(x))cos(x)1cos(x))=2limx0((1+cos(x))cos(x))=2((1+cos(0))cos(0))=2((1+1)1)=4  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to 0}\left(\displaystyle \frac{\sin\left(x\right)\sin\left(2x\right)}{1-\cos\left(x\right)}\right) & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1-\cos^2\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right)\\ \\ & =2\cdot \lim\limits_{x\to 0}\left(\frac{\left(1+\cos\left(x\right)\right)\left(1-\cos\left(x\right)\right)\cos\left(x\right)}{1-\cos\left(x\right)}\right) \\ \\ & =2\cdot \lim\limits_{x\to 0}\left(\left(1+\cos\left(x\right)\right)\cos\left(x\right)\right) \\ \\ & = 2\cdot \left(\left(1+\cos\left(0\right)\right)\cos\left(0\right)\right) \\ \\ & =2\cdot \left(\left(1+1\right)\cdot 1\right) \\ \\ & =4 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 16

Advertisements

PROBLEM:

Evaluate limx0(1cos2(x)1+cos(x)) \displaystyle \lim\limits_{x\to 0}\left(\frac{1-\cos^2\left(x\right)}{1+\cos\left(x\right)}\right)


Advertisements

SOLUTION:

This problem can be solved using a direct substitution of x=0x=0. That is

limx0(1cos2x1+cosx)=1cos2(0)1+cos(0)=111+1=0  (Answer)\begin{align*} \lim\limits_{x\to 0}\left(\frac{1-\cos^2 x }{1+\cos x }\right) & =\frac{1-\cos^2\left(0\right)}{1+\cos\left(0\right)} \\ \\ & =\frac{1-1}{1+1}\\ \\ & = 0 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 15

Advertisements

PROBLEM:

Evaluate limx0(sin3xsinxtanx) \displaystyle \lim_{x\to 0}\left(\frac{\sin^3x}{\sin x-\tan x}\right).


Advertisements

SOLUTION:

A straight substitution of x=π4\displaystyle x=\frac{\pi }{4} leads to the indeterminate form 00\displaystyle \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx0(sin3xsinxtanx)=limx0(sin3xsinxsinxcosx)=limx0(sin3xsinxcosxsinxcosx)=limx0(sin3xcosxsinxcosxsinx)=limx0(sin3xcosx(sinx)(cosx1))=limx0(sin2xcosx(cosx1))=limx0((1cos2x)cosx(1cosx))=limx0((1+cosx)(1cosx)cosx(1cosx))=limx0((1+cosx)cos(x)1)=1limx0((1+cosx)cosx)=1(1+cos0)cos0=1(1+1)1=2  (Answer)\begin{align*} \displaystyle \lim _{x\to 0}\left(\frac{\sin^3x}{\sin x-\tan x}\right) & =\lim _{x\to 0}\left(\frac{\sin^3x}{\sin x-\frac{\sin x}{\cos x}}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\sin^3 x}{\frac{\sin x \cos x - \sin x}{\cos x}}\right) \\ \\ & = \lim _{x\to 0}\left(\frac{\sin^3 x \cos x }{\sin x \cos x - \sin x}\right) \\ \\ &=\lim _{x\to \:0}\left(\frac{\sin^3 x \cos x}{\left(\sin x \right)\left(\cos x-1\right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\sin^2 x \cos x }{\left(\cos x -1\right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\left(1-\cos^2 x \right) \cdot\cos x }{-\left(1-\cos x \right)}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\left(1+\cos x \right) \left(1-\cos x \right) \cdot\cos x }{-\left(1-\cos x \right)}\right) \\ \\ & =\lim _{x\to 0}\left(\frac{\left(1+\cos x \right) \cdot \cos\left(x\right)}{-1}\right) \\ \\ & =-1\cdot \lim _{x\to 0}\left(\left(1+\cos x\right)\cdot\cos x \right) \\ \\ & =-1\cdot \left(1+\cos 0 \right)\cdot \cos 0 \\ \\ & =-1\cdot \left(1+1\right)\cdot 1 \\ \\ & =-2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 14

Advertisements

PROBLEM:

Evaluate limxπ4(tan2xsec2x)\displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\frac{\tan\:2x}{\sec\:2x}\right).


Advertisements

SOLUTION:

A straight substitution of x=π4x=\frac{\pi }{4} leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limxπ4(tan2xsec2x)=limxπ4(sin2xcos2x1cos2x)=limxπ4(sin2x)=sin(2π4)=sinπ2=1  (Answer)\begin{align*} \displaystyle \lim\limits_{x\to \:\frac{\pi \:}{4}}\left(\frac{\tan\:2x}{\sec\:2x}\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\frac{\frac{\sin\:2x}{\cos\:2x}}{\frac{1}{\cos\:2x}}\right) \\ \\ & =\lim\limits_{x\to \:\frac{\pi \:}{4}}\left(\sin\:2x\right) \\ \\ & =\sin\left(2\cdot \frac{\pi }{4}\right) \\ \\ & =\sin\frac{\pi }{2} \\ \\ & =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 13

Advertisements

PROBLEM:

Evaluate limx3(x29x3)\displaystyle \lim\limits_{x\to 3}\left(\frac{\sqrt{x^2-9}}{x-3}\right).


Advertisements

SOLUTION:

A straight substitution of x=3x=3 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx3(x29x3)=limx3(x29x3x29x29)=limx3((x+3)(x3)(x3)x29)=limx3(x29(x3)x29)=limx3(x+3x29)=3+3329=60=  (Answer)\begin{align*} \lim\limits_{x\to \:3}\left(\frac{\sqrt{x^2-9}}{x-3}\right) & =\lim\limits_{x\to 3}\left(\frac{\sqrt{x^2-9}}{x-3}\cdot \frac{\sqrt{x^2-9}}{\sqrt{x^2-9}}\right) \\ \\ & =\lim\limits_{x\to 3}\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\sqrt{x^2-9}}\right) \\ \\ & =\lim\limits_{x\to 3}\left(\frac{x^2-9}{\left(x-3\right)\sqrt{x^2-9}}\right) \\ \\ & =\lim _{x\to 3}\left(\frac{x+3}{\sqrt{x^2-9}}\right) \\ \\ & =\frac{3+3}{\sqrt{3^2-9}} \\ \\ & =\frac{6}{0} \\ \\ & =\infty \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Since the function’s limit is different from the left to its limits from the right, the limit does not exist. 


Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 12

Advertisements

PROBLEM:

Evaluate limx0(1x(131x+9))\displaystyle \lim\limits_{x\to 0}\left(\frac{1}{x}\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)\right)


Advertisements

SOLUTION: 

A straight substitution of x=0x=0 leads to the indeterminate form 000\cdot 0 which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx0(1x(131x+9))=limx0(1(131x+9)x)=limx0(x+933x+9x)=limx0(x+933xx+9)=limx0(x+933xx+9)x+9+3x+9+3=limx0(x3x(x+9+3)x+9)=limx0(13(x+9+3)x+9)=13(0+9+3)0+9=154  (Answer)\begin{align*} \lim\limits_{x\to \:0}\left(\frac{1}{x}\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)\right) & =\lim\limits_{x\to 0}\left(\frac{1\cdot \:\left(\frac{1}{3}-\frac{1}{\sqrt{x+9}}\right)}{x}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\frac{\sqrt{x+9}-3}{3\sqrt{x+9}}}{x}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\sqrt{x+9}-3}{3x\sqrt{x+9}}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{\sqrt{x+9}-3}{3x\sqrt{x+9}}\right)\cdot \frac{\sqrt{x+9}+3}{\sqrt{x+9}+3} \\ \\ & =\lim\limits_{x\to 0}\left(\frac{x}{3x\left(\sqrt{x+9}+3\right)\sqrt{x+9}}\right) \\ \\ & =\lim\limits_{x\to 0}\left(\frac{1}{3\left(\sqrt{x+9}+3\right)\sqrt{x+9}}\right) \\ \\ & =\frac{1}{3\left(\sqrt{0+9}+3\right)\sqrt{0+9}} \\ \\ & =\frac{1}{54} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 11

Advertisements

Evaluate limx3(x3x24x) \displaystyle \lim\limits_{x\to 3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right)


Advertisements

Solution:

A straight substitution of x=3x=3 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows.

limx3(x3x24x)=limx  3(x3x24x)x2+4xx2+4x=limx3[(x3)(x2+4x)(x24x)(x2+4x)]=limx3[(x3)(x2+4x)2x6]=limx3[(x3)(x2+x+4)2(x3)]=limx3[x2+4x2]=32+432=1  (Answer)\begin{align*} \begin{align*} \lim\limits_{x\to \:3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right) & =\lim\limits_{x\to \:\:3}\left(\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right)\cdot \frac{\sqrt{x-2}+\sqrt{4-x}}{\sqrt{x-2}+\sqrt{4-x}} \\ & =\lim\limits_{x\to 3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}{\left(\sqrt{x-2}-\sqrt{4-x}\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}\right] \\ & =\lim\limits_{x\to3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{4-x}\right)}{2x-6}\right]\\ & =\lim\limits_{x\to3}\left[\frac{\left(x-3\right)\left(\sqrt{x-2}+\sqrt{-x+4}\right)}{2\left(x-3\right)}\right] \\ & =\lim\limits_{x\to 3}\left[\frac{\sqrt{x-2}+\sqrt{4-x}}{2}\right]\\ & =\frac{\sqrt{3-2}+\sqrt{4-3}}{2}\\ & =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*} \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 10

Advertisements

PROBLEM:

Evaluate limx2(x38x24)\displaystyle \lim\limits_{x\to 2}\left(\frac{x^3-8}{x^2-4\:}\right)


Advertisements

SOLUTION:

A straight substitution of  x=2x=2 leads to the indeterminate form 00 \frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx2(x38x24)=limx2[(x2)(x2+2x+4)(x+2)(x2)]=limx2[(x2+2x+4)(x+2)]=22+22+42+2=3  (Answer)\begin{align*} \lim\limits_{x\to 2}\left(\frac{x^3-8}{x^2-4\:}\right) & =\lim\limits_{x\to 2}\left[\frac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x-2\right)}\right] \\ &=\lim\limits_{x\to 2}\left[\frac{\left(x^2+2x+4\right)}{\left(x+2\right)}\right] \\ & =\frac{2^2+2\cdot 2+4}{2+2} \\ & =3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}


Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 9

Advertisements

PROBLEM:

Evaluate limx4(1x14x4)\displaystyle \lim\limits_{x\to 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4\:}\right).


Advertisements

SOLUTION:

A straight substitution of x=4x=4 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows:

limx4(1x14x4)=limx4(4x4xx4)=limx44x4x(x4)=limx4(4x4x(4x))=limx414x=144=116  (Answer)\begin{align*} \\ \lim\limits_{x\to 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4}\right)& =\lim\limits_{x\to 4}\left(\frac{\frac{4-x}{4x}}{x-4}\right)\\ \\ & =\lim\limits_{x\to 4}\frac{4-x}{4x\left(x-4\right)}\\ \\ &=\lim\limits_{x\to 4}\left(\frac{4-x}{-4x\left(4-x\right)}\right)\\ \\ & =\lim\limits_{x\to 4}-\frac{1}{4x}\\ \\ & =-\frac{1}{4\cdot 4}\\ \\ & =-\frac{1}{16} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.3, Problem 8

Advertisements

PROBLEM:

Evaluate limx8x32x8\displaystyle \lim\limits_{x\to 8}\:\frac{\sqrt[3]{x}-2}{x-8}.


Advertisements

SOLUTION:

A straight substitution of x=8x=8 leads to the indeterminate form 00\frac{0}{0} which is meaningless.

Therefore, to evaluate the limit of the given function, we proceed as follows

limx8x32x8=limx8x32x8x23+2x3+4x23+2x3+4=limx8x8(x8)(x23+2x3+4)=limx81(x23+2x3+4)=1(823+283+4)=14+4+4=112  (Answer)\begin{align*} \\ \lim\limits_{x\to 8}\:\frac{\sqrt[3]{x}-2}{x-8}& =\lim\limits_{x\to \:8}\:\frac{\sqrt[3]{x}-2}{x-8}\cdot \frac{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}\\ \\ & =\lim\limits_{x\to 8}\:\frac{x-8}{\left(x-8\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}\\ \\ & =\lim\limits_{x\to 8}\:\frac{1}{\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}\\ \\ & =\frac{1}{\left(\sqrt[3]{8^2}+2\sqrt[3]{8}+4\right)}\\ \\ & =\frac{1}{4+4+4}\\ \\ & =\frac{1}{12} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}

Advertisements
Advertisements