PROBLEM:
Evaluate \displaystyle \lim\limits_{x\to 1}\:\frac{x-1}{\sqrt{x+3}-2}.
A straight substitution of x=1 leads to the indeterminate form \frac{0}{0} which is meaningless.
Therefore, to evaluate the limit of the given function, we proceed as follows
\begin{align*} \\ \lim\limits_{x\to 1}\:\frac{x-1}{\sqrt{x+3}-2}& =\lim\limits_{x\to \:1}\:\frac{x-1}{\sqrt{x+3}-2}\cdot \frac{\sqrt{x+3}+2}{\sqrt{x+3}+2}\\ \\ & =\lim\limits_{x\to 1}\frac{\left(x-1\right)\left(\sqrt{x+3}+2\right)}{\left(x+3\right)-2^2}\\ \\ & =\lim\limits_{x\to 1}\frac{\left(x-1\right)\left(\sqrt{x+3}+2\right)}{x-1}\\ \\ & =\lim\limits_{x\to 1}\sqrt{x+3}+2&\\ \\ & =\sqrt{1+3}+2\\ \\ &=\sqrt{4}+2\\ \\ & =2+2\\ \\ & =4 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \\ \end{align*}
You must be logged in to post a comment.