Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 5 Advertisements PROBLEM: Evaluate limx→8(2x+x3−4)\displaystyle \lim\limits_{x\to 8}\left(2x+\sqrt[3]{x}-4\right)x→8lim(2x+3x−4). Advertisements SOLUTION: Plug in the value x=8. limx→8(2x+x3−4)=[2(8)+83−4]=[16+2−4]=14 (Answer)\begin{align*} \lim\limits_{x\to 8}\left(2x+\sqrt[3]{x}-4\right) & = \left[2\left(8\right)+\sqrt[3]{8}-4\right]\\ & =\left[16+2-4\right]\\ & =14 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}x→8lim(2x+3x−4)=[2(8)+38−4]=[16+2−4]=14 (Answer) Advertisements Advertisements
Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 4 Advertisements PROBLEM: Evaluate limx→π3(sin 2xsin x)\displaystyle \lim\limits _{x\to \frac{\pi }{3}}\left(\frac{\sin\:2x}{\sin\:x}\right)x→3πlim(sinxsin2x). Advertisements SOLUTION: Plug in the value x=π3\displaystyle x=\frac{\pi }{3}x=3π. limx→π3(sin 2xsin x)=sin(2⋅π3)sin (π3)=3232=1 (Answer)\begin{align*} \lim\limits_{x\to \frac{\pi }{3}}\left(\frac{\sin\:2x}{\sin\:x}\right) & =\frac{\sin\left(2\cdot \frac{\pi }{3}\right)}{\sin\:\left(\frac{\pi }{3}\right)} \\ & =\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}\\ & =1 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}x→3πlim(sinxsin2x)=sin(3π)sin(2⋅3π)=2323=1 (Answer) Advertisements Advertisements
Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 3 Advertisements PROBLEM: Evaluate limx→π4(tan x+sin x)\displaystyle \lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right)x→4πlim(tanx+sinx). Advertisements SOLUTION: limx→π4(tan x+sin x)=limx→π4(tan x)+limx→π4(sin x)=tan π4+sin π4=1+22=2+22 (Answer)\begin{align*} \lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x+\sin\:x\right) & =\lim\limits_{x\to \frac{\pi }{4}}\left(\tan\:x\right)+\lim\limits_{x\to \frac{\pi }{4}}\left(\sin\:x\right)\\ & =\tan\:\frac{\pi }{4}+\sin\:\frac{\pi }{4}\\ & =1+\frac{\sqrt{2}}{2}\\ & =\frac{2+\sqrt{2}}{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}x→4πlim(tanx+sinx)=x→4πlim(tanx)+x→4πlim(sinx)=tan4π+sin4π=1+22=22+2 (Answer) Advertisements Advertisements
Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 2 Advertisements PROBLEM: Evaluate limx→3(4x+2x+4)\displaystyle \lim\limits_{x\to 3}\left(\frac{4x+2}{x+4}\right)x→3lim(x+44x+2). Advertisements SOLUTION: limx→3(4x+2x+4)=limx→3(4x+2)limx→3(x+4)=limx→3(4x)+limx→3(2)limx→3(x)+limx→3(4)=4⋅limx→3(x)+23+4=4⋅3+23+4=12+27=147=2 (Answer)\begin{align*} \lim_{x\to 3}\left(\frac{4x+2}{x+4}\right)& =\frac{\lim\limits_{x\to 3}\left(4x+2\right)}{\lim\limits_{x\to 3}\left(x+4\right)}\\ & =\frac{\lim\limits_{x\to 3}\left(4x\right)+\lim\limits_{x\to 3}\left(2\right)}{\lim\limits_{x\to 3}\left(x\right)+\lim\limits_{x\to 3}\left(4\right)}\\ & =\frac{4\cdot \lim\limits_{x\to 3}\left(x\right)+2}{3+4}\\ & =\frac{4\cdot 3+2}{3+4}\\ & =\frac{12+2}{7}\\ & =\frac{14}{7}\\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}x→3lim(x+44x+2)=x→3lim(x+4)x→3lim(4x+2)=x→3lim(x)+x→3lim(4)x→3lim(4x)+x→3lim(2)=3+44⋅x→3lim(x)+2=3+44⋅3+2=712+2=714=2 (Answer) Advertisements Advertisements
You must be logged in to post a comment.