Tag Archives: mathematics solutions

Differential and Integral Calculus by Feliciano and Uy, Exercise 1.2, Problem 2

Advertisements

PROBLEM:

Evaluate limx3(4x+2x+4)\displaystyle \lim\limits_{x\to 3}\left(\frac{4x+2}{x+4}\right).


Advertisements

SOLUTION:

limx3(4x+2x+4)=limx3(4x+2)limx3(x+4)=limx3(4x)+limx3(2)limx3(x)+limx3(4)=4limx3(x)+23+4=43+23+4=12+27=147=2  (Answer)\begin{align*} \lim_{x\to 3}\left(\frac{4x+2}{x+4}\right)& =\frac{\lim\limits_{x\to 3}\left(4x+2\right)}{\lim\limits_{x\to 3}\left(x+4\right)}\\ & =\frac{\lim\limits_{x\to 3}\left(4x\right)+\lim\limits_{x\to 3}\left(2\right)}{\lim\limits_{x\to 3}\left(x\right)+\lim\limits_{x\to 3}\left(4\right)}\\ & =\frac{4\cdot \lim\limits_{x\to 3}\left(x\right)+2}{3+4}\\ & =\frac{4\cdot 3+2}{3+4}\\ & =\frac{12+2}{7}\\ & =\frac{14}{7}\\ & =2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\ \end{align*}

Advertisements
Advertisements