Tag Archives: Mechanics of Materials

Mechanics of Materials: An Integrated Learning System 4th Edition by Timothy A. Philpot Complete Solution Manual


You can complete your purchase even if you do not have a PayPal account. Just click on the appropriate card type you have.

For your concerns, send an email to [email protected]

Mechanics of Materials: An Integrated Learning System 4th Edition Solution Manual by Engineering-Math.org

This is a PDF copy of the complete guide to the problems and exercises of the book Mechanics of Materials: An Integrated Learning System 4th Edition by Timothy A. Philpot. Expect the copy to be sent to your email address within 24 hours. If you have not heard from us within 24 hours, kindly send us a message to [email protected]

$49.00


Other similar materials are available

Book Covers

Mechanics of Materials Eleventh Edition by R.C. Hibbeler Complete Solution Manual

$49.00

Book Covers (1)

Mechanics of Materials 8th Edition by Beer, Johnston, DeWolf and Mazurek Complete Solution Manual

$49.00


Torsion Featured Image: Chapter 3 of the book of Andrew Pytel and Ferdinand Singer Strength of Materials 4th Edition

Chapter 3: Torsion


Problem 301

Problem 302

Problem 303

Problem 304

Problem 305

Problem 306

Problem 307

Problem 308

Problem 309

Problem 310

Problem 311

Problem 312

Problem 313

Problem 314

Problem 315

Problem 316

Problem 317

Problem 318

Problem 319

Problem 320

Problem 321

Problem 322

Problem 323

Problem 324

Problem 325

Problem 326

Problem 327

Problem 328

Problem 329

Problem 330

Problem 331

Problem 332

Problem 333

Problem 334

Problem 335

Problem 336

Problem 337

Problem 338

Problem 339

Problem 340

Problem 341

Problem 342

Problem 343

Problem 344

Problem 345

Problem 346

Problem 347

Problem 348

Problem 349

Problem 350


Advertisements
Advertisements
Simple Strain Featured Image: Chapter 2 of the book of Andrew Pytel and Ferdinand Singer Strength of Materials 4th Edition

Chapter 2: Simple Strain


Problem 201

Problem 202

Problem 203

Problem 204

Problem 205

Problem 206

Problem 207

Problem 208

Problem 209

Problem 210

Problem 211

Problem 212

Problem 213

Problem 214

Problem 215

Problem 216

Problem 217

Problem 218

Problem 219

Problem 220

Problem 221

Problem 222

Problem 223

Problem 224

Problem 225

Problem 226

Problem 227

Problem 228

Problem 229

Problem 230

Problem 231

Problem 232

Problem 233

Problem 234

Problem 235

Problem 236

Problem 237

Problem 238

Problem 239

Problem 240

Problem 241

Problem 242

Problem 243

Problem 244

Problem 245

Problem 246

Problem 247

Problem 248

Problem 249

Problem 250

Problem 251

Problem 252

Problem 253

Problem 254

Problem 255

Problem 256

Problem 257

Problem 258

Problem 259

Problem 260

Problem 261

Problem 262

Problem 263

Problem 264

Problem 265

Problem 266

Problem 267

Problem 268

Problem 269

Problem 270

Problem 271

Problem 272

Problem 273

Problem 274

Problem 275

Problem 276


Advertisements
Advertisements
Simple Stress Featured Image: Strength of Materials 4th Edition by Andrew Pytel and Ferdinand Singer

Chapter 1: Simple Stress


Problem 101

Problem 102

Problem 103

Problem 104

Problem 105

Problem 106

Problem 107

Problem 108

Problem 109

Problem 110

Problem 111

Problem 112

Problem 113

Problem 114

Problem 115

Problem 116

Problem 117

Problem 118

Problem 119

Problem 120

Problem 121

Problem 122

Problem 123

Problem 124

Problem 125

Problem 126

Problem 127

Problem 128

Problem 129

Problem 130

Problem 131

Problem 132

Problem 133

Problem 134

Problem 135

Problem 136

Problem 137

Problem 138

Problem 139

Problem 140

Problem 141

Problem 142


Advertisements
Advertisements

Mechanics of Materials: An Integrated Learning System 4th Edition by Timothy A. Philpot Complete Solution Manual



Advertisements
Advertisements

Mechanics of Materials: An Integrated Learning Approach 3rd Edition by Timothy A. Philpot Problem P1.2


A 2024-T4 aluminum tube with an outside diameter of 2.50 in. will be used to support a 27-kip load. If the axial normal stress in the member must be limited to 18 ksi, determine the wall thickness required for the tube.


Solution:

We are given the following values:

\begin{align*}
\text{Outside Diameter}, D & = 2.50\ \text{in} \\
\text{Axial Load}, P & = 27\ \text{kips} \\
\text{Maximum Axial Stress}, \sigma & = 18\ \text{ksi}\\
\text{Inside Diameter}, d & = D-2t
\end{align*}

We are solving for the unknown wall thickness of the tube, t.

From the definition of normal stress, solve for the minimum area required to support a 27-kip load without exceeding a stress of 18 ksi

\begin{align*}
\sigma & =\frac{P}{A} \\ 
A_{\text{min}} & =\frac{P}{\sigma } \\ 
A_{\text{min}} & = \frac{27\:\text{kips}}{18\:\text{ksi}} \\ 
A_{\text{min}} & = 1.500\:\text{in}^2 
\end{align*}

The cross-sectional area of the aluminum tube is given by

A=\frac{\pi }{4}\left(D^2-d^2\right)

Set this expression equal to the minimum area and solve for the maximum inside diameter, d

\begin{align*}
A & =\frac{\pi }{4}\left(D^2-d^2\right) \\
A & = \frac{\pi }{4}\left[\left(2.50\ \text{in}\right)^2-d^2\right] \\
1.500\ \text{in}^2 & = \frac{\pi }{4}\left[\left(2.50\ \text{in}\right)^2-d^2\right] \\
4 \left( 1.500\ \text{in}^2 \right) & = \pi \left[\left(2.50\ \text{in}\right)^2-d^2\right] \\
\frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi} & = \left(2.50\ \text{in}\right)^2-d^2 \\
d^{2} & = \left( 2.50\ \text{in}^{2} \right) - \frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi} \\
d & = \sqrt{\left( 2.50\ \text{in}^{2} \right) - \frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi}} \\
d & = 2.08330\ \text{in}
\end{align*}

The outside diameter D, the inside diameter d, and the wall thickness t are related by

D = d+2t

Therefore, the minimum wall thickness required for the aluminum tube is

\begin{align*}
t & =\frac{D-d}{2} \\
t & = \frac{2.50\:\text{in}-2.08330\:\text{in}}{2} \\
t & = 0.208\ \text{in} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Mechanics of Materials: An Integrated Learning Approach 3rd Edition by Timothy Philpot Problem P1.1


A stainless steel tube with an outside diameter of 60 mm and a wall thickness of 5 mm is used as a compression member. If the axial normal stress in the member must be limited to 200 MPa, determine the maximum load P that the member can support.


Solution:

We are given the following values:

\begin{align*}
\text{Outside Diameter}, D &= 60\ \text{mm} \\
\text{Wall Thickness}, t & = 5\ \text{mm} \\
\text{Inside Diameter}, d & = D-2t = 60\ \text{mm}-2\left( 5\ \text{mm} \right) = 50\ \text{mm}\\
\text{Maximum Axial Stress}, \sigma & =200\ \text{MPa} = 200\ \frac{\text{N}}{\text{mm}^2}
\end{align*}

The cross-sectional area of the stainless-steel tube is

\begin{align*}
A & = \frac{\pi}{4}\left( D^2 - d^2 \right) \\
A & = \frac{\pi}{4}\left[ \left( 60\ \text{mm} \right)^2 - \left( 50\ \text{mm} \right)^2 \right] \\
A & = 863.938\ \text{mm}^2
\end{align*}

The normal stress in the tube can be expressed as

\sigma =\frac{P}{A}

The maximum normal stress in the tube must be limited to 200 MPa. Using 200 MPa as the allowable normal stress, rearrange this expression to solve for the maximum load P.

\begin{align*}
P_{max} & = \sigma _{max} A \\
P_{max} & = \left( 200\ \text{MPa} \right)\left( 863.938\ \text{mm}^2 \right)\\
P_{max} & = \left( 200\ \frac{\text{N}}{\text{mm}^2} \right)\left( 863.938\ \text{mm}^2 \right)\\
P_{max} & = 172788\ \text{N} \\
P_{max} & = 172.8\ \text{kN}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}